TÍNH TOÁN THỦY VĂN

Nguyễn Thanh Sơn

NXB Đại học Quốc gia Hà Nội 2003

Từ khoá: Tần suất, Chuẩn dòng chảy nằm, Đồng chảy lưu, mật độ, dao động dòng chảy nằm, phân phối dòng chảy nằm, dòng chảy lưu, đường độ tối hạn, vi phân, dòng chảy kết, tài nguyên nước, môi trường

Tài liệu trong Thư viện điện tử Đại học Khoa học Tự nhiên có thể được sử dụng cho mục đích học tập và nghiên cứu cá nhân. Nghiêm cấm mọi hình thức sao chép, in ấn phục vụ các mục đích khác nếu không được sự chấp thuận của nhà xuất bản và tác giả.
MỤC LỤC

MỤC LỤC ... 2
LỢI TỤA ... 7
Chương 1. NỘI DUNG VÀ PHƯƠNG PHÁP Nghiên Cứu Tính toán thủy văn 8
1.1. NỘI DUNG Nghiên Cứu .. 8
1.2. LỊCH SỬ PHÁT TRIỂN TÍNH TOÁN THỦY VĂN .. 9
 1.2.1. Các công trình nghiên cứu ... 9
 1.2.2. Tổng hợp, phân chia các giai đoạn phát triển thủy văn 11
 1.2.3. Lịch sử phát triển thủy văn ở Việt Nam .. 12
1.3. PHƯƠNG PHÁP Nghiên Cứu ... 12
 1.3.1. Phương pháp khảo sát trầm do .. 12
 1.3.2. Phương pháp khái quát ... 13
 1.3.3. Phương pháp mô hình hóa toán học và thực nghiệm 13
 1.3.4. Phương pháp thống kê .. 15
Chương 2. SỨ HÌNH THÀNH DỌNG CHÂY ... 16
2.1. KHÁI NIỆM VỀ CHẾ ĐỘ NƯỚC LỤC ĐỊA ... 16
2.2. ĐƠN VỊ ĐO DỌNG CHÂY .. 16
2.3. CÁC ĐẶC TRUNG CỦA LƯU VỤ ... 18
 2.3.1. Các đặc trưng của mạng lưới địa lý thủy văn 18
 2.3.2. Các đặc trưng hình thái của lưu vực .. 18
 2.3.3. Các yếu tố meteor.......................... 20
 2.3.4. Các đặc trưng khí hậu ... 21
2.4. BẢN CHẤT VẬT LÝ CỦA DỌNG CHÂY .. 23
 2.4.1. Giao đoạn tạo dòng ... 23
 2.4.2. Giao đoạn dòng chảy suôn đolec .. 24
 2.4.3. Giao đoạn dòng chảy trong sông ngòi .. 25
2.5. CÔNG THỨC CĂN NGUYỆN CỦA DỌNG CHÂY ... 26
 2.5.1. Khái niệm về đường cong chảy truyển .. 26
 2.5.2. Thành lập công thức căn nguyên dòng chảy 26
Chương 3. PHƯƠNG TRÌNH CĂN BẰNG NƯỚC ... 28
3.1. PHƯƠNG TRÌNH CĂN BẰNG NƯỚC ĐẲNG TỘNG QUÁT 28
3.2. PHƯƠNG TRÌNH CĂN BẰNG NƯỚC CHO MỘT LƯU VỤ SÔNG NGƠI 29
 3.2.1. Phương trình cân bằng nước cho lưu vực kin 29
 3.2.2. Phương trình cân bằng nước cho lưu vực hồ 29
3.3. PHƯƠNG TRÌNH CĂN BẰNG NƯỚC LUU VỤ CHO THỜI KỲ NHIỀU NĂM 29
3.4. PHÂN TÍCH CÁC NHÀN TÔ ẢNH HƯỞNG ĐẾN DỌNG CHÂY SÔNG NGƠI THÔNG QUA PHƯƠNG TRÌNH CĂN BẰNG NƯỚC .. 30
3.5. PHƯƠNG TRÌNH CĂN BẰNG NƯỚC AO HỒ, ĐÀM LẤY 31
 3.5.1. Phương trình cân bằng nước cho ao hồ .. 31
 3.5.2. Phương trình cân bằng nước cho đầm lầy .. 31
3.6. CĂN CÂN NƯỚC VIỆT NAM ... 32
3.6.1. Tài nguyên nước toàn lãnh thổ ... 32
3.6.2. Tài nguyên nước theo 7 vùng kinh tế nông nghiệp 32

Chương 4. CHUẨN ĐỒNG CHÂY NAM ... 35
4.1. ĐỊNH NGHĨA VÀ KHẢI NIỆM .. 35
4.2. XÁC ĐỊNH CHUẨN ĐỒNG CHÂY NAM KHI CÓ DÀY DỪ TÀI LIỆU QUAN TRÁC 35
4.3. LỰA CHỌN THỜI KỲ TÍNH TOÁN .. 36
4.4. TÍNH CHUẨN ĐỒNG CHÂY NAM KHI KHÔNG DỪ SƠ LIỆU QUAN TRÁC 38
4.5. XÁC ĐỊNH CHUẨN ĐỒNG CHÂY NAM KHÔNG CÓ TÀI LIỆU QUAN TRÁC 40
 4.5.1. Xác định theo bản đồ đăng tri ... 40
 4.5.2. Phương pháp nói suy ... 41
 4.5.3. Xác định chuẩn đồng chảy năm theo phương trình cân bằng nước 41
4.6. ANH HƯỞNG CÁC ĐIỀU KIỆN DỊA LÝ TỰ NHIÊN TỚI CHUẨN ĐỒNG CHÂY NAM 42
 4.6.1. Anh hưởng của các yếu tố khí hậu .. 42
 4.6.2. Anh hưởng của diện tích lúa vực đến chuẩn đồng chảy năm 43
 4.6.3. Anh hưởng của địa hình đến chuẩn đồng chảy năm 44
 4.6.4. Anh hưởng của địa chất đá không tổ chức đến chuẩn đồng chảy năm 45
 4.6.5. Anh hưởng của rừng và các dạng thảm thực vật đến chuẩn đồng chảy năm ... 45
 4.6.6. Anh hưởng của hồ đến chuẩn đồng chảy năm 47
 4.6.7. Anh hưởng của đầm lầy đến chuẩn đồng chảy năm 47
 4.6.8. Anh hưởng của các hoạt động kinh tế đến chuẩn đồng chảy năm 47
4.7. XÂY DỰNG BẢN ĐỒ CHUẨN ĐỒNG CHÂY NAM .. 48
 4.7.1. Phân tích tài liệu xà dụng bản đồ chuẩn đồng chảy năm 48
 4.7.2. Các bước xây dựng bản đồ chuẩn đồng chảy năm 48
4.8. ĐỒNG CHÂY SÒNG NG Dise VIỆT NAM VÀ CÁC YÊU TÔ DỊA LÝ TÁC ĐỒNG TỔ NÓ 49
 4.8.1. Các yếu tố khí hậu ... 49
 4.8.2. Thổ nối hod và nham thạch .. 52
 4.8.3. Địa hình .. 53
 4.8.4. Rừng ... 54
 4.8.5. Sự hoạt động kinh tế của con người ... 55

Chương 5. DAO ĐỒNG CHÂY NAM .. 58
5.1. ỨNG DỤNG LÝ THUYẾT XÁC SUẤT THÔNG KÊ TÍNH ĐAÔ ĐỒNG CHÂY NAM........ 59
 5.1.1. Một số tính chất cơ bản của các đường phân bố đặc trưng đồng chảy 59
 5.1.2. Dòng con dâm bao và các hài niệm thống kế 60
5.2. XÁC ĐỊNH CÁC THẢM SÓ ĐẶC TRUNG CHƯƠI ĐỒNG CHÂY KHI CÓ DÀY DỪ SƠ LIỆU QUAN TRÁC ... 61
5.3. XÁC ĐỊNH CÁC THẢM SÓ ĐẶC TRUNG THEO PHƯƠNG PHÁP ĐỘ GIẢI - GIẢI TÍCH G. A. ALEXXAYEV .. 63
5.4. XÁC ĐỊNH THẢM SÓ THÔNG KÊ ĐỒNG CHÂY NAM KHI QUAN TRÁC NGĂN 66
5.5. XÁC ĐỊNH THẢM SÓ THÔNG KÊ ĐỒNG CHÂY NAM KHÔNG CÓ QUAN TRÁC 68
5.6. XÂY DỰNG ĐƯỜNG CON DÂM BẢO VÀ TÍNH TOÁN ĐỒNG CHÂY NAM VỚI XÁC SUẤT AN TOÀN CHƠI TRƯỚC ... 69

Chương 6. SỨ PHÀN PHỘI ĐỒNG CHÂY TRONG NĂM .. 72
6.1. CÁC NHAN TÔ ỨNH HƯỞNG ĐẾN SỨ PHÀN PHỘI ĐỒNG CHÂY TRONG NĂM 72
Chương 8. ĐỒNG CHÁY BÉ NHẤT .. 126
 8.1. TÍNH TOÁN ĐỒNG CHÁY BÉ NHẤT KHI CÓ SÓ LIÊU QUAN TRÁC .. 126
 8.2. TÍNH TOÁN ĐỒNG CHÁY BÉ NHẤT KHI KHÔNG CÓ TÀI LIỆU QUAN TRÁC 127
 8.3. TÍNH HÌNH ĐỒNG CHÁY KIỆT Ở VIỆT NAM ... 128
 8.3.1. Các thời kỳ đồng chay kiến ... 128
 8.3.2. Nước trong mùa khô và các vấn đề về nước ... 128
Chương 9. ĐỒNG CHÁY RÁN .. 130
 9.1. CÁC YÊU TỐ HÌNH THÀNH ĐỒNG CHÁY RÁN .. 131
 9.2. TÍNH TOÁN ĐỒNG CHÁY PHÚ SA ... 131
 9.3. TÍNH TOÁN LĂNG ĐỒNG HỒ CHÚA ... 133
 9.4. LƯU BÙN ĐÁ .. 133
Chương 10. MÔ HÌNH HOÀ TOÁN HỌC ĐỒNG CHÁY .. 135
 10.1. PHÂN LOẠI MÔ HÌNH ĐỒNG CHÁY ... 135
 10.1.1. Mô hình đầu nhiên .. 135
 10.1.2. Mô hình tái định .. 136
 10.1.3. Mô hình động lực - đầu nhiên 138
 10.2. NHỮNG NGUYÊN LÝ CHƯNG TRONG VIỆC XÂY DỰNG MÔ HÌNH "HỢP ĐEN" - LỚP MÔ HÌNH TUYỂN TÍNH ĐỨNG ... 139
 10.2.1. Một số câu trả lời mô hình tuyển tính cơ bản ... 140
 10.3. GIỚI THIỆU CÁC MÔ HÌNH HỘP ĐEN TRONG TÍNH TOÁN THỦY VĂN .. 145
 10.3.1. Mô hình Kalinin - Miuliakóp - Nash .. 145
 10.3.2. Đường lưu lượng đơn vị ... 146
 10.4. NGUYÊN LÝ XÂY DỰNG MÔ HÌNH "QUAN NIỆM" ĐỒNG CHÁY 147
 10.4.1. Xây dựng câu trả lời mô hình ... 147
 10.4.2. Xác định thông số mô hình .. 148
 10.5. GIỚI THIỆU MÔ HÌNH QUAN NIỆM ... 150
 10.5.1. Mô hình TANK .. 150
 10.5.2. Mô hình SSARR .. 159
 10.6. MÔ HÌNH DIỆN TOÁN CHẤU THÔ .. 163
 10.7.2. Mô hình hóa chuối đồng chay năm ... 167
 10.7.3. Xét phân bố dòng chảy trong năm ... 168
 10.9. KẾT QUẢ NGHIỆN CỦA ÚNG ĐỨNG MÔ HÌNH TOÁN THỦY VĂN Ở VIỆT NAM 171
Chương 11. QUẢN LÝ CHẤT LƯỢNG VÀ BẢO VỆ MÔI TRƯỜNG NƯỚC 172
 11.1. NGUỒN NƯỚC VÀ MÔI TRƯỜNG .. 172
 11.1.1. Ng湦n nước trên Trái Đất .. 172
 11.1.2. Sử dụng nguồn nước mạt, nước ngầm ... 173
 11.1.3. Ảnh hưởng của môi trường đối với chất lượng nước sông, vản đề ô nhiễm nước hiện nay .. 175
 11.1.4. Ảnh hưởng của các công trình thủy lợi, đáp nước đến môi trường 176
11.2. KIẾN THỨC CƠ SỞ ĐỂ ĐÁNH GIÁ CHẤT LƯỢNG NƯỚC ... 176
 11.2.1. Những thông số vật lý, hóa học, sinh học của chất lượng nước 176
 11.2.2. Nhu cầu oxy sinh học BOD .. 177
 11.2.3. COD, TOD, TOC .. 179
11.3. THÀNH PHẦN VÀ NGUỒN GỐC NƯỚC THẢI ... 179
 11.3.1. Nước thải sinh hoạt .. 179
 11.3.2. Nước thải công nghiệp .. 180
 11.3.3. Nước thải từ nông nghiệp, chăn nuôi .. 180
11.4. CHẤT LƯỢNG NƯỚC DÙNG VÀ TIÊU CHUẨN CHẤT LƯỢNG NƯỚC .. 180
 11.4.1. Chất lượng nước dùng .. 180
 11.4.2. Tiêu chuẩn chất lượng nước ... 181
11.5. PHÂN TÍCH NHỮNG ẢNH HƯỞNG Ở NHIỆM TRONG TƯ TỊNH ... 182
 11.5.1. Số biến đổi và oxy hòa tan trong khu vực ô nhiễm ... 182
 11.5.2. Nguồn cung cấp và tiêu thụ oxy trong nước .. 182
 11.5.3. Mô hình tính toán sự biến đổi BOD - Oxy hòa tan theo chiều dòng chảy 184
TÀI LIỆU THAM KHẢO ... 187
HYDROLOGICAL CALCULATION .. 187
GIÁO TRÌNH "TÍNH TOÁN THỦY VĂN" ĐƯỢC BIÊN SOẠN CHO SINH VIÊN NGÀNH THỦY VĂN LỤC ĐỊA, TRƯỞNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐẠI HỌC QUỐC GIA HÀ NỘI. GIÁO TRÌNH CÒN ĐƯỢC DỤNG NHƯ TÀI LIỆU THAM KHẢO CHO CÁC NHÀ THỦY VĂN TRONG NGHIÊN CỨU, THIẾT KẾ VÀ QUẢN LÝ TÀI NGUyn MÔI TRƯỜNG NƯỚC.

Tác giả xin cảm ơn TS. Lương Tuấn Anh, PGS. TS. Nguyễn Văn Tuấn đã có nhiều ý kiến đóng góp nhằm hoàn thiện cuốn sách này. Chắc chắn giáo trình vẫn còn rất nhiều kiến thức hay, tác giả mong nhận được sự đóng góp, bổ sung của các chuyên gia, các bạn đồng nghiệp để lần xuất bản sau được hoàn thiện hơn.

Tác giả
Chapter 1

NOI DUNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU
TÌNH TOÁN THỦY VÂN

1.1. NOI DUNG NGHIÊN CỨU

Tình toán thủy văn là một phần quan trọng của thủy văn học liên quan chặt chẽ với những nhu cầu thực tế của nền kinh tế quốc dân nhằm giải quyết các vấn đề điều hòa và phân phối tài nguyên nước. Tình toán thủy văn làm nhiệm vụ cung cấp những nghiên cứu lý thuyết trong lĩnh vực thủy văn và các vấn đề thực hiện sử dụng tài nguyên nước. Cơ thể niềm tin tưởng thủy văn là phần chính trong thủy văn thực hành.

Chính nội dung trên đã xác định mục đích nghiên cứu và vị trí của Tình toán thủy văn đối với các chuyên đề nghiên cứu tiếp theo của thủy văn học như: Dự báo thủy văn, Tình toán thủy lợi và Động lực học dòng sông- những hướng nghiên cứu cơ bản nhất của thủy văn học. Trong giáo trình này xem xét các vấn đề về sự hình thành, các qui luật phân bố và phát triển của các đặc trưng dòng chảy và các phương pháp định lượng chúng.

Nội dung chính của giáo trình tập trung chủ yếu vào việc phân tích các đặc trưng của dòng chảy, nghiên cứu các ảnh hưởng của các điều kiện khí tượng, đất đai tới các đặc trưng độ và các nguyên lý khác quan trọng cũng như sự thay đổi theo thời gian, không Gian của dòng chảy và các tham số thông kế của nó. Tóm lại nó đảm bảo cho khả năng tình toán dòng chảy ở các lưu vực đã hoặc thấm chỉ còn chưa được nghiên cứu.

Nước là một dạng tài nguyên quý báu không gì có thể thay thế được, là một thành phần không thể tách rời của môi trường sống, là lợi ích, là hiểm họa không đường đời với nhân loại. Chính vì vậy, Thủy văn học là một ngành khoa học xác định vai trò của nước trong thiên nhiên và trong sự phát triển kinh tế - xã hội của đất nước.

Nước là tài nguyên có thể tự tạo nên mang ý nghĩa đặc biệt đối với sự phát triển của nhân loại.

Để sử dụng các tính toán thủy văn cần làm rõ như cấu trúc sử dụng thông tin về các đặc trưng và tham số dòng chảy của các ngành tế quốc dân khác nhau.

Khi thiết kế các trường thủy diễn đạt thiết phải có các thông tin về dòng chảy tổng hợp nhiều năm, dòng chảy các năm nhiều nước và ít nước, phân bố dòng chảy theo mùa và theo tháng. Theo các thông tin đó có thể xác định công suất thiết kế của nhà máy thủy điện và khả năng sản xuất điện trong tương lai. Khi làm đập, hồ chứa cần có những thông tin về lưu lượng cực đại và tận suất lập lại của nó.

Để đảm bảo cung cấp nước cho công nghiệp và sinh hoạt thì trước hết phải nắm vững các thông tin về dòng chảy cực tiểu và các năm nước bè, nước trung bình.

Để xây dựng hồ chứa phục vụ cho công tác thủy nông cần các số liệu tin cậy về dòng chảy trung bình nhiều năm, giá trị tổng lượng và lưu lượng nước cực đại mùa mưa, đặc biệt là sự phân bố dòng chảy trong năm cùng như lưu lượng dòng chảy mùa khô.

Đối với giao thông vận tải khi thiết kế cầu, công qua sông cần có mức nước lở nhất. Để đảm bảo cho tàu thuyền đi lại cần biết rõ mức nước lở nhất.

Để qui hoạch kinh tế các lãnh thổ cần có số liệu về vùng ngập lụt và khả năng xói lở hai bờ sông.

Sự cần thiết đảm bảo yếu cầu khác nhau trong lĩnh vực xây dựng bởi các đặc trưng muôn hình muôn vẻ của dòng chảy chính là nội dung cơ bản của Tình toán thủy văn.
1.2. LỊCH SỬ PHÁT TRIỂN TỈNH TOÁN THỦY VĂN

1.2.1. Các công trình nghiên cứu

Cùng như bất kỳ một môn khoa học nào, khoa học thủy văn đã trải qua nhiều giai đoạn phát triển: từ đơn sơ đến hoàn chỉnh trong các công trình nghiên cứu lý thuyết, từ đơn giản đến phức tạp trong kỹ thuật đo đạc, thu thập thông tin, phương tiện tính toán. Việc xem xét một cách hệ thống những giai đoạn phát triển của khoa học thủy văn có một ý nghĩa nhất định trong việc đưa ra những nghiên cứu mới, phù hợp với quy luật phát triển khác quan, giúp ta xác định chính xác pháp triền của ngành và trước mắt là chọn các đề tài nghiên cứu trong thế kỷ XXI.

Lịch sử phát triển thủy văn đã được thể hiện qua nhiều công trình nghiên cứu của các tác giả. Các công trình đó để cập đến những vấn đề sau:

- Khoảng từ năm 3500 đến 3000 (trước Công nguyên) sự uy hiếp thường xuyên của sông Nin đã khiến cho các Pharaông (các vua Ai Cập thời cổ đại) phải ra lệnh thường xuyên theo dõi mức nước sông Nin qua các thiết bị đo đạc được gọi là các nilomet.

- Từ năm 1542 đến 1519, Leonardo de Vinci tiến hành đo đạc dòng chảy bằng pháo nirô.

- Từ năm 1510 đến 1590 Palisay cũng có lý thuyết của Plato và Aristotle về tuần hoàn thủy văn bằng khí niệm mới.

- Từ 1610 - 1687 phát triển các công trình:
 - 1738: Bernoulli phát triển mới quan hệ giữa tốc độ và áp suất trong dòng chảy.
 - 1769: Herbert us phát hiện sự biến đổi của mực mua theo độ cao.
 - 1775: Chezy nêu ra công thức dòng chảy trong kênh hố.
 - 1797: Venturi nêu ra công thức tính dòng chảy trong ống khí có hình dạng cơ hội.

Thế kỷ XIX:

- 1802: Dalton phát hiện mới quan hệ giữa bốc hơi và áp suất.

- 1851: Muvanev nêu ra khái niệm thời gian tập trung dòng chảy và dân ra công thức tỷ lệ nội tieng Q = CIF.

- 1856: Daresy làm lý thuyết về dòng chảy ngầm.

- 1885: Maning về công thức dòng chảy Chezy - Manning.

- Từ 1865-1876 ở Nga I.S. Leliasky đưa ra lý thuyết về sự chuyển dòng của nước trong dòng sông và sự hình thành sông ngồi (1893); V.M. Lochin đưa ra lý thuyết "Cơ cấu dòng song " ('1897).

- Từ 1878 đến 1908 E. Vopakep phân tích đào dòng của dòng chảy trong nhiều năm, phát hiện tính động bộ của dòng chảy và mua đã khẳng định sự dụng dẫn ý kiến của Vaitykıp: "Sông ngồi là sản phẩm của khi hậu".
Vào cuối thế kỷ XIX công trình nghiên cứu của Pencer về chế độ mửa dòng sông Danyp. Trong đó Pencer lăn đầu tiên đã dùng phương trình cân bằng nước để khảo sát bốc hơi từ mặt lưu vực. Ở Mỹ, Nieuwenhôn lăn đầu tiên xây dựng bản đồ đăng tri động chảy năm.

Thế kỷ XX (cho tới khi mô hình SSARR ra đời) thủy văn học phát triển rất mạnh mẽ.

1914: Hazen đưa ra khái niệm đầu tiên về thủy văn ngẫu nhiên đặt nền móng tổng quát cho Tính toán thủy văn.

1919: Viện Thủy văn Quốc gia Liên Xô được thành lập đã điều hành thông nhất toàn bộ công tác nghiên cứu thủy văn sông ngòi ở Liên Xô cũ.

1924: Poster sử dụng đường tân suất trong tính toán thiết kế.

1929: Polter thực hiện những cố gắng đầu tiên để mô tả quá trình động chảy theo hướng nhất định.

1930: Bush xây dựng máy tính tương tự đầu tiên dùng trong thủy văn.

1932: Sherman đề xuất khái niệm đường đơn vị.

1933: Horton đưa ra lý thuyết thẩm.

1935: Mocarthy đưa ra phương pháp diễn toán Muskingum.

1942: Geumbel đề ra lý thuyết giả trị cực trị dùng trong thủy văn.

1943: Máy tính thế hệ I ra đời được dùng trong tính toán thủy văn.

1948: Linsley sử dụng phương pháp tương tự diễn toán tính toán lụi.

1949: Máy tính thế hệ II ra đời được dùng trong thủy văn.

1950: Sugawara đề xuất mô hình đầu tiên về pha mất đât của tuần hoàn thủy văn.

1951: Kohler, Lunsley sử dụng kỹ thuật tương quan hợp trước.

1955: Lighthile và Whihfam đưa ra lý thuyết về dòng động lực.

1956: Suganawa đưa ra mô hình Tank là mô hình được dùng nhiều trên thế giới.

1957: Nash đề xuất khái niệm đường đơn vị tức thời.

1958: Mô hình SSARR ra đời.

Trong những năm tiếp theo phương hướng thuận thủy văn phát triển mạnh mẽ, chỉ riêng trong lĩnh vực mô hình tạt đinh có thể kể ra hàng loạt mô hình nổi tiếng:

1968: Mô hình Kutcheon và mô hình Hyrenn.

1970: Box và Jenkins đưa ra mô hình Arima.

Từ 1971 - 1990 hướng thủy văn tính toán đã phát triển rất mạnh mẽ và đa dạng.

Từ 1990 - nay thủy văn học hiện đại đòi hỏi sự kết hợp của nhiều lĩnh vực các khoa học Trai Đất, đặc biệt là hệ thống thông tin địa lý.
1.2.2. Tổng hợp, phân chia các giai đoạn phát triển thủy văn

Điểm lại những sự kiện lịch sử trong quá trình phát triển thủy văn, kết hợp với sự phân tích điều kiện phát triển kinh tế - xã hội trong từng giai đoạn có thể cho phép ta tạm thời phân định ra 3 thời kỳ phát triển của khoa học thủy văn. Mỗi thời kỳ có những đối tượng nghiên cứu riêng, mang sắc thái riêng trong nội dung nghiên cứu cũng như phương pháp luận. Những thời kỳ đó là:

1. Thời kỳ thủy văn đầy lý: Thời kỳ nghiên cứu của thời kỳ này là mô tả thủy văn học đầy lý riêng. Thủy văn mang sắc thái khoa học tự nhiên diễn biến với nội dung nghiên cứu chủ yếu là giải quyết hiện tượng thủy văn, tính toàn thành phần của can c andra nước cũng như tuân hoàn thủy văn, phân vùng, phân khu xây dựng các bồndoctype đóng trách nhiệm. Về phương pháp phân tích vi mô thường áp dụng các phương pháp thực nghiệm.

3. Thời kỳ thủy văn tài nguyên nước: Đây là giai đoạn phát triển hiện nay của thủy văn. Đặc điểm chủ yếu của giai đoạn này là sự can thiệp mạnh mẽ của con người vào quá trình thủy văn. Do đó đối tượng nghiên cứu chủ yếu xem xét mối quan hệ giữa cung và cầu về nước trong hệ thống.

Đo sự tác động của con người đã trở thành nhân tố đáng kể nên thủy văn mang sắc thái hỗn hợp của khoa học tự nhiên, khoa học kỹ thuật và khoa học xã hội. Nội dung nghiên cứu chủ yếu là đánh giá, phân tích dự báo những biến đổi do tác động của con người. Về phương diện nghiên cứu, chủ yếu là phân tích hệ thống. Phương pháp dựa trên thực nghiệm sử dụng phương pháp thống quạ luận để kiểm tra và phán phạm vi lớn.

Có thể nếu lên một số chủ đề nghiên cứu chính của thủy văn trong giai đoạn này là:

- Phân tích hệ thống tài nguyên nước.
- Mô hình hoá thủy văn, đặc biệt là mô hình phân bố.
- Thủy văn trong các môi trường đặc thù: do thỉ, rừng, kho nước, các vùng can có tác công nghiệp, thủy văn vùng giáp ranh miền...

Trong tương lai, thủy văn trong môi trường đặc thù sẽ đóng một vai trò quan trọng có thể tạo ra một giai đoạn phát triển mới của thủy văn. Đây là một điều đáng chú ý đối với chúng ta. Ở Việt Nam các vấn đề về thủy văn do thỉ, thủy rừng... còn ít được chú ý. Trong khi đó lĩnh vực này thế giới đã nghiên cứu hoàn thiện. Nên việc đối với nước ta, phương pháp tiến của thủy văn thế kỷ XXI sẽ theo hướng "hoạt động thủy văn đi vào chuyên ngành bấm sat thực hiện ở mỗi vùng có đặc thù riêng, theo yêu cầu của sản xuất nông lâm nghiệp, khi bạc thủy điện, giao thông xây dựng".

Ngoài phân chia lịch sử phát triển của thủy văn qua 3 giai đoạn trên Ventechen còn chia lịch sử phát triển ra làm 8 giai đoạn:

1. Giai đoạn suy đoán trước năm 1400.
2. Giai đoạn quan sát 1400 - 1600.
3. Giai đoạn đắc đôn giản 1600 - 1700.
5. Giao đoạn đổi mới dòng kế 1800 - 1900.

1.2.3. Lịch sử phát triển thủy văn ở Việt Nam

Cuối thế kỷ XIX với mục đích khai thác thực địa, thực dân Pháp đã đặt một số tổ chức thủy văn trên sông Hồng, sông Lô và ở vùng dàn cư.trù phú, đặt đại phi nhiều như các trạm ven sông Dương, sông Luộc... Sơ trạm quan trắc thưa thớt, quy phạm do đặc không rõ ràng nên sở liệu có độ chính xác không cao. Thực tế công tác thủy văn nước ta chỉ được bắt đầu sau hồi lớn lập lại năm 1954. Chúng ta bắt tay vào công cuộc khôi phục kiến tê và bước đầu xây dựng cơ sở vật chất cho chủ nghĩa xã hội. Do nước ta là một nước nông nghiệp nên công thủy lợi được đặt lên hàng đầu với hai nhiệm vụ chính là chống hạn hán và chống lũ lụt.

Trong Nghị quyết Bộ Chính trị Trung ương Đảng thập ii năm 1958 về rõ: Việc trừ thủy ở các dòng sông lớn là nhiệm vụ quan trọng của ngành thủy lợi. Chúng ta phải từng bước tiến hành truy сын tập gốc, khai thác các con sông lớn như sông Hồng, sông Thái Bình, sông Mê Kông.... Trướct hết phải tập trung lực lượng nghiên cứu truy сын sông Hồng, vũ lũ sông Hồng uy hiếp nghiêm trọng đồng bằng Bắc Bộ phi nhiều rộng lớn.

Để phục vụ cho nhiệm vụ quan trọng trên đây ta bắt đầu khởi phuc các trạm do đặc cụ và tiến hành quy hoạch lucr tương trạm để đảm bảo mặc Bắc. Uy ban khai thác và truy сын sông Hồng được thành lập. Năm 1960 Cục Thủy văn được thành lập. Đến nay, trên lãnh thổ nước ta có 106 con sông chính và 1360 phụ lưu cấp I đến cấp VI, trên đó có 203 trạm do đặc thủy văn.

Về đối ngũ cánh bộ, ta có một đối ngũ mạnh có khả năng đảm bảo giải quyết những vấn đề thủy văn, thủy lợi, điều tra cơ bản để ra. Nhiều công trình và thành tựu khoa học của lĩnh vực thủy văn học đã được công bố. Tập chi Khoa học Khu tựng Thủy văn, Tập chỉ Khoa học Thủy lợi ra đời.

1.3. PHƯƠNG PHÁP NGHIỆN CỨU

Khi nghiên cứu chế độ và tính toán các đặc trưng dòng chảy, sử dụng các phương pháp như sau:

1.3.1. Phương pháp khảo sát trạm đo

Khi mạng lưới quan trắc thủy văn đầy đặc với chuỗi quan trắc đủ dài, có khả năng bảo quát toàn bộ lưu vực nghiên cứu. Phương pháp này được sử dụng rộng rãi tại nhiều nước trên các lãnh thổ nhỏ. Thực
1.3.2. Phương pháp khái quát

Đồng các số liệu thu thập qua mens lữơ quan trách khi xương thủy văn để xác định quy luật hình thành dòng chảy, sự phân bố của các đặc trưng dòng chảy theo lãnh thổ và sự biến thiên của chúng theo thời gian.

Điều này đạt được nhờ sự phân tích bài chất vật lý, địa lý của hiến tương hay quả trình đăng xét từ nhóm các yếu tố ảnh hưởng đến sự hình thành và phát triển dòng chảy cũng như các đặc trưng của nó. Cũng có thể tổng hợp dòng chảy từ việc nghiên cứu các thành phần cấu thành dòng chảy riêng rẽ.

1.3.3. Phương pháp mô hình hoá toán học và thực nghiệm

Khi phân tích số liệu thực nghiệm theo từng phương pháp sử dụng rất rộng rãi các phương pháp thống kê toán học và lý thuyết xác suất.

Phương pháp giải quyết các yếu tố chủ đạo của quan hệ dạng được nghiên cứu với các nhân tố tác động bằng cách dựa các hệ số tổng cộng theo quan hệ được thiết lập, rồi bằng việc phân tích bốc dánh các thành phần được xác định trong mối quan hệ toàn - lý, từ bàn chất tác động của một số yếu tố chủ đạo để dựa ra công thức tính toán chung.

Cơ sở của phương pháp này là dựa trên việc có dòng chảy là sản phẩm của nhiều quá trình địa lý tự nhiên (khí hậu và mặt đệm) tác động lên nó. Loại này thường gặp nhất ở nhóm các công thức triệt giảm dòng chảy cực đại.

Gia sử muốn xác định lổ nộp dòng chảy y từ tập hợp các yếu tố địa lý tự nhiên trên một lưu vực cụ thể nào đó từ quan hệ của đại lượng dòng chảy A = f(F, x, I, δ₁, δ₂, δ₃,...) với F - diện tích lưu vực; x - lượng mưa; I - độ dốc bình quân lưu vực; δ₁, δ₂, δ₃,... là hệ số riêng, ao hồ, đầm lầy... ta có thể có mối liên hệ từ công thức:

\[y = \frac{A}{(F + 1)^{\theta}} \] (1.1)

Trong (1.1) A - Hệ số địa lý tổng cống các yếu tố hình thành và tác động đến dòng chảy. Nếu có tài liệu quan trắc y thì có thể xác định A bằng cách:

Từ (1.1) logarit hoá hai yếu tố có:

\[\ln y = \ln A - n \ln (F + 1). \]

Từ (1.1) theo số liệu đường quan hệ ln y = f(ln (F + 1)).

Từ giá trị ln A trên H.1.1 xác định A, n = tgo, thay vào công thức (1.1) ta có công thức kinh nghiệm xác định y với tham số A.

Cùng từ vĩ du trên nếu ta muốn xác định lổ nộp dòng chảy y từ số liệu mưa x thì công thức sử dụng có dạng:

\[y = A_1 x + b \] (1.2)

với A1 - hệ số địa lý tổng hợp phần ánh quan hệ giữa mưa và lỗ nộp dòng chảy, b - lỗ nộp dòng chảy khi chưa có mưa.
Tương tự như vậy có thể xác định được các tham số địa lý cần tìm qua hệ số địa lý tổng hợp trên cơ sở nhận biết đường quan hệ giữa các yếu tố đó và việc phân tích bằng chất hiện tượng hay quá trình của các yếu tố ảnh hưởng.

Phương pháp ban đầu và nỗi suy địa lý dựa trên cơ sở giả thiết rằng các đặc trưng của dòng chảy cũng như các yếu tố cảnh quan địa lý thay đổi tự túc theo lánh thơ và tuân theo qui luật địa diệu.

Nơi dung của phương pháp như sau:

Theo sơ đồ trên H.1.3, y_1, y_2, y_3, y_4 là giá trị các đường dọc mực lỏng dòng chảy trên lưu vực. Khoảng cách L, L_y có thể xác định bằng cách đo trực tiếp trên bản đồ. Các xác định giá trị dòng chảy y di qua điểm Y trên đường mực giả sử B_y. Theo phương pháp nội suy tuyến tính địa lý ta có:

$$\frac{y_3 - y_2}{L} = \frac{y_1 - y_4}{L_y}$$ (1.3)

Biến đổi công thức (1.3) ta nhận được:

$$y = y_3 - \frac{(y_3 - y_2)L_y}{L}$$ (1.4)

Các giá trị về phái của (1.4) đã được xác định do đó y tính được dễ dàng.

Phương pháp tương tự thư viện phù thuộc vào việc lựa chọn các lưu vực tương tự với lý luận rằng, do dòng chảy là sản phẩm của khí hậu và chịu sự tác động các điều kiện địa lý tự nhiên nên với các lưu vực tương tự (có cùng một điều kiện địa lý cảnh quan giống nhau) thì dòng chảy của chúng cũng tương tự nhau. Có các đặc trưng dòng chảy của lưu vực tương tự ta có thể xác định các đặc trưng dòng chảy của lưu vực đang xét qua việc xác định mức độ quan hệ giữa lưu lượng của dòng chảy của lưu vực đó tính toán số hiệu chỉnh. Phương pháp này rất dùng khi kéo dài các chuỗi số liệu. Cụ thể nội dung phương pháp sẽ được trình bày trong chương 4.

Hình 1.1. Quan hệ $\ln y = f(\ln (F+1))$

Hình 1.2. Quan hệ $y = f(x)$
1.3.4. Phương pháp thống kê

Các phương pháp thống kê tham gia vào các bài toán tính toán thủy văn trong rất nhiều ứng dụng cụ thể. Hầu như toàn thống kê có mặt trong mọi lĩnh vực tính toán và đặc biệt đóng vai trò quan trọng trong khối xử lý số liệu - dữ kiện thông tin đầu vào quan trọng nhất của bài toán tính toán thủy văn bằng một phương pháp bất kỳ nào. Vì tầm quan trọng của nó như vậy nên đã tách riêng ra một môn học chuyên đề "Xác suất thống kê trong thủy văn" và trong giáo trình này không có ý nghĩa, nhưng trong từng bài toán cụ thể mà các chương sau chúng ta xem xét cũng sẽ gặp các phép toán thống kê trong lời giải.

Bài toán thống kê thường gặp trong tính toán thủy văn là kiểm tra tính đúng đắn, tính phù hợp của số liệu qua việc lựa chọn các chỉ tiêu trên cơ sở phân tích ý nghĩa vật lý của hiện tượng; đường cong phân bố của chuỗi và các tham số đặc trưng của nó; các hàm sử dụng để mô tả các giai đoạn của quá trình dòng chảy: hàm trưởng quan, hàm cấu trúc, hàm phổ; hàm phân tích nhanh tổ v.v.. Ngày cả khi sử dụng các mô hình thì việc xác định các tham số, các tham số phân thưởng xuyên áp dụng các lời giải từ phép toán lý thuyết xác suất thống kê. Phương pháp thống kê được sử dụng rất rộng rãi trong thủy văn học, nói chung và trong tính toán thủy văn, nói riêng.

Ngoài ra còn dùng các phương pháp cân bằng nước, cân bằng nhiệt v.v.. dựa trên nguyên tắc của định luật bảo toàn vật chất và năng lượng mà ta sẽ trực tiếp khảo sát ở chương 3.
Chương 2
SỰ HÌNH THÀNH ĐỒNG CHÂY

2.1. KHÁI NIỆM VỀ CHẾ ĐO NƯỚC LỰC ĐỊA

Toàn bộ những đặc điểm về sự thay đổi trạng thái nước theo thời gian tập hợp lại thành khái niệm về chế độ nước hay chế độ thủy văn. Chế độ thủy văn biến hiện trong sự dao động trong thời hạn nhiều năm, mùa và trong ngày đến của các đặc trưng:

1) Mực nước (chế độ mực nước);
2) Luồng nước (chế độ dòng chảy);
3) Nhiệt độ của nước (chế độ nhiệt);
4) Luồng nước và chất rắn do dòng nước cuốn theo (chế độ phù sa);
5) Thành phân và nông độ chất hóa tan (chế độ hóa học của nước);
6) Sự thay đổi lòng sông (chế độ diễn biến lòng sông);
7) Hiện tượng băng giá (chế độ băng).

Người ra còn xét chế độ sông, chế độ lưu tốc... Những sự dao động của mực nước và luồng nước theo thời gian thường được thống nhất thành khái niệm chế độ nước.

Tùy theo mức độ ảnh hưởng của công trình thủy lợi người ta phân ra chế độ thủy văn đã điều tiết và chế độ thủy văn tự nhiên khi công trình có ảnh hưởng. Tùy theo loại thời lượng nước người ta phân biệt chế độ nước sông, chế độ nước hồ, chế độ nước ngầm, chế độ nước đầm lầy.

Đồng chảy sông ngòi có ý nghĩa rất lớn đối với thực tế cuộc sống. Từ các đặc trưng của chế độ thủy văn suy ra mức độ tuổi tiêu của dòng sông, trữ lượng tài nguyên nước và qui mô của nhà máy thủy điện, của hệ thống đường giao thông thủy v.v..

2.2. ĐỒN VI ĐỒ ĐỒNG CHÂY

Trong tình toán thủy văn, để nghiên cứu dòng chảy người ta thường dùng 7 đơn vị đặc còi ban được quy định trong nghiên cứu dòng chảy sông ngòi như sau:

1. Lưu lượng nước: Ký hiệu là Q là luồng nước chảy qua một mặt cắt của một con sông nào đó trong đơn vị thời gian là 1 giây. Đơn vị lưu lượng (m3/s). Ngoài lưu lượng tuyệt đối trên ta còn dùng lưu lượng bình quân ngày, 10 ngày, tháng, năm và nhiều năm...

2. Tổng lượng dòng chảy: Ký hiệu là $W(m^3)$ là lượng nước đi qua một mặt cắt nào đó trong thời đoạn ΔT đơn vị là m3 hay km3.

Quan hệ giữa tổng lượng W và lưu lượng Q là:

$$ W = \int_0^t Q dt $$ \hspace{1cm} (2.1)

3. Môđun dòng chảy: Ký hiệu là q, hoặc M là luồng nước có khả năng sinh sản ra trên một đơn vị diện tích lưu vực là 1 km2 trong một đơn vị thời gian. Đơn vị của nó là m3/km2 hay l/km2.

Giữa môđun lưu lượng q (hoặc M) và lưu lượng Q có quan hệ như sau:

$$ q(l/s.km^2) = \frac{1000Q(m^3/s)}{F(km^2)} $$ \hspace{1cm} (2.2)
Trong đó \(Q\) - lưu lượng nước, \(F\) - diện tích lưu vực tối mặt cắt khôngché. Cúng như lưu lượng, mốđun cũng có thể là mố đun tức thời và mố đun trung bình thời đơn.

4. Lớp dòng chảy: Ký hiệu là \(y\) là chiều cao của lớp nước có khả năng sinh sản ra được trong khi mub trái dè ra trên bề mặt diện tích lưu vực. Đơn vị của lớp dòng chảy có cũng đon vị với muba là (mm).

Giữa tổng lượng, mố đun dòng chảy \(q\) và lớp dòng chảy \(y\) có quan hệ với nhau:

\[
y(mm) = \frac{W(m^{'})}{10^3F(km^2)} (mm) = \frac{QT}{F} = qT.
\]

(2.3)

Trong khi tính toán thường lấy thời hạn là năm. Do đó giữa mố đun \(q\) và lớp dòng chảy \(y\) với thời hạn là năm có quan hệ như sau:

\[
y(mm/n^{'}.m) = 31.5q
\]

hoặc

\[
q(l/skm^2) = 0.0317y
\]

(2.4) (2.5)

Tính chất hợp lý của công thức (2.4), (2.5) có thể chứng minh như sau: nếu biểu thị chiều cao lớp dòng chảy bằng \(y\) mm/năm và diện tích lưu vực là \(F\) - km\(^2\) thì tổng lượng dòng chảy từ diện tích nay là \(W\) sẽ bằng:

\[W = \frac{y}{10^3} F.10^3 m^{'}/năm = yF.10^3 m^{'}/năm.
\]

Luồng nước phải chảy trong một năm, nghĩa là trong vòng 31.5.10\(^6\) giây là thời gian tính ra chảy của một năm. Nếu mỗi dòng chảy bằng \(q\) (l/skm\(^2\)) thì ta có công thức:

\[q. \frac{31.5.10^6}{10^3} F(m^{'}/năm) = yF10^3/năm.
\]

(2.6)

Từ đây ta nhận ra biểu thức (2.4) và (2.5) đúng cho thời doán tính là 1 năm. Đối với thời doán bất kỳ ta có:

\[y = qN
\]

hoặc

\[q = \frac{y}{N}
\]

(2.7) (2.8)

ở đây \(N\) là số giây tính theo đơn vị trieu trong thời doán cho biết. Đối với 1 tháng 30 ngày, \(N = 2.59\) và tháng 31 ngày \(N = 2.68\) v.v...

5. Động chảy chuẩn: Ký hiệu \(Q_0(m^{'}/s)\), và \(W_0(m^{'})\), \(M_0(1/\text{km}^2)\), \(y_0(\text{mm})\). Trị số dòng chảy dao động từ năm này đến năm khác. Chi khi thời gian tính lưu lượng trung bình đủ dài, đặc trung dòng chảy chuẩn trung bình này mới ổn định. Ta gọi nó là dòng chảy chuẩn trung bình nhiều năm hoặc dòng chảy chuẩn. Dòng chảy chuẩn có thể biểu thị bằng lưu lượng \(Q_0(m^{'}/s)\), tổng lượng \(W_0(m^{'}/s)\), mố đun \(M_0(1/\text{km}^2)\) hoặc \(y_0(\text{mm})\).

\[Q_0 = \frac{1}{n} \sum_{i=1}^{n} Q_i
\]

(2.9)

6. Hệ số mố đun: ký hiệu là \(K\) là một hệ số không thủ nguyên. \(K\) là tỷ số giữa lưu lượng dòng chảy của một năm nào đó so với chuẩn dòng chảy \(Q_0\).

\[K = \frac{Q}{Q_0}
\]

(2.10)

7. Hệ số dòng chảy: ký hiệu là \(\eta\) là tỷ số chiều cao lớp dòng chảy \(y\) trong thời doán nào đó trên lưu lượng mua rôi tương ứng \(x\) với thời doán đó trên lưu vực ta xét:
\[\eta = \frac{y}{x} \]

(2.11)

\(\eta \) là một số không thuần nguyên và luôn bé hơn 1 viết theo dạng số thập phân 0 \(\leq \eta \leq 1 \).

2.3. CÁC ĐẶC TRƯNG CỦA LƯU VỤC

2.3.1. Các đặc trưng của mạng lưới địa thủy văn

1. Chiều dài sông \(L \) là khoảng cách từ nguồn đến cửa sông được đo bằng km. Thường độ dài sông được xác định trực tiếp trên bản đồ địa hình bằng dụng cụ đo đường cong. Thường thường phải đo hai lần, nếu chênh lệch số đo không vượt quá 2% thì nhận giá trị trung bình của hai lần đo làm giá trị chiều dài sông theo công thức:

\[L = MKa \]

với \(M \) - giá trị trung bình số đo, \(K \) - hệ số hiệu chỉnh uốn khúc, \(a \) - hệ số chuyển đổi tỷ lệ ban đồ, \(L \) - chiều dài thực tế của sông.

2. Hệ số uốn khúc sông đặc trưng cho mức độ uốn khúc (H.2.1) và được thiết lập qua tỷ số giữa độ dài sông thực tế \(L \) và đường thẳng nối giữa nguồn và cửa sông \(I \).

3. Mặt độ mạng lưới sông là độ dài sông trên một ki lô mét vuông của lãnh thổ. Hệ số mặt độ mạng lưới sông được xác định theo công thức:

\[\rho = \frac{\sum l}{F} \]

(2.12)

với \(\rho \) - mặt độ lưới sông \(\text{km/km}^2 \); \(\sum l \) - tổng độ dài lòng sông trong lưu vực km; \(F \) - diện tích lưu vực \(\text{km}^2 \)

Hệ số mặt độ lưới sông là chỉ số đặc trưng cho sự phát triển dòng chảy mặt trên lãnh thổ đang xết. Nếu xác định trên bản đồ tỷ lệ càng lớn thì độ chính xác của việc xác định hệ số mặt độ lưới sông càng cao.

2.3.2. Các đặc trưng hình thái của lưu vực

\[\text{Hình 2.1. Xác định hệ số uốn khúc} \]

\[\text{Hình 2.2. Xác định độ dài lưu vực} \]

a) theo đường thẳng; b) theo trung tuyến
1. Diện tích lưu vực $F (km^2)$ là một phần bè mặt trải dài cát cát chịu sự lỏp phù thơ nhưng mà từ độ nước chảy vào đối tượng nghiên cứu. Diện tích lưu vực được xác định qua bảng độ địa hình tỷ lệ trung bình với máy đo diện tích hoặc phương pháp khác. Có thể phân biệt diện tích lưu vực mặt và diện tích lưu vực ngầm. Thông thường hai diện tích này không trùng nhau, song do sự khó xác định chính xác diện tích lưu vực ngầm nên khi tính toán thường chỉ dùng diện tích lưu vực mặt và thuật ngữ diện tích lưu vực là chung cho cả hai khái niệm trên.

2. Chiều dài lưu vực $L (km)$ là khoảng cách xác định theo đường thẳng từ cuối sông đến điểm xa nhất trên đường phân thủy sở với cuối trong trường hợp hình dạng lưu vực cần đòi.(H.2.2a)

Trong trường hợp lưu vực dạng hình cong, chiều dài lưu vực do theo đường tròn tuyến dài qua trung tâm lưu vực (H.2.2b).

3. Độ rộng trung bình lưu vực $B_b (km)$ xác định bằng cách chia diện tích F cho chiều dài lưu vực L:
$$B_b = \frac{F}{L}.$$
(2.13)

4. Độ rộng lớn nhất của lưu vực B_{max} là khoảng cách đường vuông góc lớn nhất với độ dài lưu vực.

5. Hệ số đối xứng lưu vực a được trung cho độ phân bố không đồng đều của diện tích phần trai (F_r) và phần (F_{ph}) của lưu vực (so với dòng sông chính) và được tính toàn theo công thức:
$$a = \frac{F_r - F_{ph}}{(F_r + F_{ph})/2}.$$
(2.14)

6. Hệ số giãn lưu vực δ được trung cho tỷ số độ dài sông và độ rộng trung bình lưu vực và được xác định theo công thức:
$$\delta = \frac{L}{F}.$$
(2.15)

7. Hệ số hình dạng lưu vực là đại lượng nghịch đảo của độ giãn dặc trung bởi tỷ số của độ rộng B và độ dài sông L hoặc là diện tích F với bình phương chiều dài:
$$\delta = B = \frac{F}{L^2}.$$
(2.16)

8. Hệ số phát triển đường phân thủy m được trung cho sự lồi lõm hình dạng lưu vực và được tính như tỷ số chiều dài đường thủy phần $S (km)$ với đường tròn S_{1} có diện tích bằng diện tích lưu vực F có nghĩa là:
$$m = \frac{S}{S_{1}} = \frac{S}{2\sqrt{\pi F}} = 0.282 \frac{S}{\sqrt{F}}.$$
(2.17)

$m \geq 1$, m càng lớn thì hình dạng của lưu vực càng khác xa đường tròn.

![Hình 2.3. Đồ thị tổng trung diện tích lưu vực](image-url)
9. Đồ thị tăng trưởng diện tích lưu vực là đồ thị mô tả sự tăng dần của diện tích lưu vực từ nguồn đến cuối sông. Trục hoành là chiều dài sông từ nguồn đến cuối, trục tung là các phần diện tích giữa các phù lưu. Những thay đổi tốt nhất trên đồ thị tương ứng với diện tích các sông nhánh. Đồ thị được thực hiện cho cả bờ trái lẫn bờ phải của sông chính. (H.2.3)

2.3.3. Các yêu tố mặt đệm

Các yêu tố mặt đệm được hiểu là các thành phần của môi trường địa lý tự nhiên, đặc trưng cho tính đặc thù của lưu vực. Nó có thể là địa hình, điều kiện địa chất như những, mức độ phụ rừng, độ đâm lầy v.v...

1. Đồ cao trung bình của lưu vực sông ngoài H_b được tính theo công thức:

$$H_b = \frac{f_1 H_1 + f_2 H_2 + \cdots + f_n H_n}{F}$$

với H_b - đồ cao trung bình của lưu vực, f_1, f_2, \ldots, f_n - diện tích phần của lưu vực nằm giữa các đường đồng mức, km2; H_1, H_2, \ldots, H_n - đồ cao trung bình giữa các đường đồng thời, F - diện tích lưu vực.

2. Chiều dài trung bình của suôn độc lưu vực sông \bar{L} (km) được xác định:

$$\bar{L} \approx \frac{F}{2L} = \frac{1}{2\rho}$$

với L - chiều dài lưu vực; F - diện tích lưu vực, ρ - mật độ lưu vực km2. Do dòng chảy thường không bắt đầu từ đường thủy phân mà cách nó một khoảng nào đó nên công thức tính toán thường dùng là:

$$\tilde{L} = \frac{1}{2.25\rho}$$

3. Đồ độc sông trên một đoạn nào đó có thể được xác định theo mặt cắt độc của sông. Công thức thường được áp dụng:

$$\bar{I} = \frac{H_1 - H_2}{l} = \frac{\Delta H}{l}$$

I là đồ độc, H_1, H_2 là cao độ điểm đầu và điểm cuối của đoạn sông, m; l là chiều dài đoạn sông, km.

4. Đồ độc trung bình của lưu vực I_b được tính theo công thức:

$$I_b = \frac{\frac{h}{2}(l_0 + l_1 + l_2 + \cdots + l_{n-1})}{F}$$

với h - độ cao địa hình (hiệu cao độ của hai đường đồng mức kế nhau), $l_0, l_1, l_2, \ldots, l_{n-1}$, độ dài đường đồng mức trong giới hạn lưu vực, km; F - diện tích lưu vực, km2;

5. Hệ số ao hồ đặc trưng cho diện tích ao hồ và các thủy vực khác trên lưu vực tính bằng phần trăm diện tích của nó so với toàn bộ lưu vực:

$$\delta_{a,h} = \frac{\sum f_{a,h}}{F} \times 100\%$$

với $\sum f_{a,h}$ - tổng diện tích mặt hồ ao và các thủy vực khác, km2; F - diện tích lưu vực, km2.

6. Hệ số đầm lầy là tỷ số giữa diện tích đầm lầy và diện tích lưu vực tính bằng %.
\[
\delta_a = \frac{f_a}{F} \times 100\% \tag{2.23}
\]

với \(f_a \) là diện tích đảm lây, km².

7. Hệ số rừng là tỷ số giữa diện tích rừng có trên lưu vực và diện tích lưu vực được tính bằng %.

\[
\delta_r = \frac{f_r}{F} \times 100\% \tag{2.24}
\]

với \(f_r \) - diện tích rừng trên lưu vực, km².

8. Nhận to địa mạo dòng chảy \(\Phi \) đặc trưng cho độ cong và độ gián địa hình trên lưu vực và được xác định theo công thức:

\[
\Phi = \frac{l}{\sqrt{I}} \tag{2.25}
\]

với \(l \) - chiều dài nguồn độc, \(m \); \(I \) - độ độc nguồn; %; Hệ số này do A. N. Befanhi đề xuất.

9. Hệ số hình thái thủy văn là tỷ số giữa tổng chiều đại hệ thống sông \(\sum l \) với lưu lượng trung bình nhiều năm \(Q_0 \) ở trầm không chế của hệ thống:

\[
\gamma_0 = \frac{\sum l}{Q_0} \tag{2.26}
\]

với \(\gamma_0 \) tính bằng km/s/m³ nó đặc trưng cho chiều đại lưới sông cần thiết để hình thành lưu lượng nước nhiều năm vào 1 m³/s. Hệ số này do I.N. Garxman đề xuất.

2.3.4. Các đặc trưng khí hậu

Các đặc trưng khí hậu trên lưu vực trước hết là các yếu tố khí tượng, tham gia (trực tiếp hoặc gián tiếp) vào việc hình thành các quá trình thủy văn khác nhau, đồng thời là thành phần tích toàn các đại lượng thủy văn của lưu vực - đó là mưa và bổ hoại trên lưu vực. Cụ thể về các yếu tố này đã được trình bày kỹ trong Thủy văn đại cương, trong các qui phạm của ngành. Giáo trình này sẽ không trình bày chi tiết mà chỉ điểm qua một số phương pháp tính toán.

1. Lương mưa trung bình trên lưu vực có thể xác định bằng những phương pháp sau đây:

 + Phương pháp đường thẳng là việc xây dựng các đường thẳng với và tính lượng mưa bình quân lưu vực theo công thức:

\[
X_{th} = \frac{x_1f_1 + x_2f_2 + \cdots + x_nf_n}{F} \tag{2.27}
\]
với $x_1, x_2, ..., x_n$ - nữa tổng lượng mực của hai đường đang vò kể nhau; $f_1, f_2, ..., f_n$ là diện tích thành phần giữa các đường đang vò.

+ Phương pháp đa giác xác định kích thước khu vực diện tích lưu vực gần với các trận do mực khác nhau. Kích thước đó chính là trong số phần biệt lượng mực từ trận này hoặc trận khác tham gia vào lượng mực bình quân lưu vực. Cách xác định các khu vực do bằng cách nói các trận do mực thành một tam giác. Từ cạnh các tam giác đó về các đường trung trực. Điểm giao các đường trung trực chính là đỉnh đa giác chứa trận do mực. Theo phương pháp này, công thức tính mực bình quân lưu vực được viết như sau:

$$X_{1b} = \frac{x'_1 f'_1 + x'_2 f'_2 + \cdots + x'_n f'_n}{F}$$ \hspace{1cm} (2.28)

với $x'_1, x'_2, ..., x'_n$ - tổng lượng mực của các trận do tương ứng; $f'_1, f'_2, ..., f'_n$ - diện tích các đa giác gần với các trận.

![Hình 2.4. Quan hệ giữa bốc hơi trung bình nhiều năm và lượng mực, lượng nhiệt bốc xả](image)

2. Bốc hơi từ bề mặt lưu vực gồm có bốc hơi từ mặt nước và bốc hơi từ mặt đất (gồm cả bốc hơi trực tiếp từ đất và bốc hơi qua mặt thoại của thấm thực vật). Cùng như do mực, do đạc bốc hơi đã được trình bày chi tiết ở các giáo trình khác như cân bằng nước và các quan phán. Ở đây sẽ không trình bày chi tiết mà chỉ đánh giá nêu như là một thành phần của phương trình cân bằng nước.

+ Bốc hơi từ mặt nước: Khi có đủ tài liệu quan trắc khí tượng bốc hơi có thể tính theo công thức sau:

$$E_0 = 0,14 n (l_0 - l_{200}) (1 + 0,72 u_{200}) $$ \hspace{1cm} (2.29)

với l_0 - giá trị trung bình của độ dẫn hồi hơi nước cực đại tính theo nhiệt độ nước trung thủy; l_{200} - độ dẫn hồi hơi nước trung bình (độ ẩm tuyệt đối của không khí) trên độ cao 200 cm trên mặt nước; u_{200} - tốc độ gió trung bình ở độ cao 200 cm trên thủy vực; n-số ngày trong thời đoạn tính toán.

22
Khi không có số liệu đo lường thì bốc hơi được tính theo số liệu của tràm đo gần nhất với thủy vũ theo hướng dẫn của qui phạm.

+ Bốc hơi trong bình nhiều năm từ mặt đất được xác định theo bán độ đăng tri bốc hơi hoặc tính toán theo nhiệt độ và độ ẩm không khí.

Nếu lượng mưa thì có thể tính toán theo công thức Buđôco M.I.:

$$E = \frac{R_o X (1 - \frac{R_o}{R_o}) X h \frac{XL}{R_o}}{L}$$

với E - bốc hơi cm/năm; X - lượng mưa năm trung bình cm/năm; R_o - giá trị cần căn cứ đối với bề mặt ấm kcal/(cm².năm); L - nhiệt lượng riêng hoá hơi bằng 0,6 kcal/năm(H.2.4).

Ngay này để tính bốc hơi còn có nhiều toàn đồ, tiêu biểu là các toàn đồ Konstanchinov A.R., P.C.Kuzin và B.V. Poliacov.

2.4. BẢN CHẤT VẠT LÝ CỦA ĐỒNG CHÂY

Sự hình thành đồng chảy từ lực mưa rơi trên bề mặt lưu vực đến khi thoát ra cửa đó về biển là một quá trình liên tục. Bắt cứ dạng tồn tại nào của nước trên bề mặt, trong từng sâu của đất đá, trong chuyển dòng đều tuân theo một qui luật nhất định thỏa mãn phương trình liên tục và phương trình chuyển động. Nói cách khác, trong quá trình vận động đồng chảy luôn bất buộc tuân theo các nguyên tắc căn bằng vật chất và cân bằng năng lượng.

Theo A. N. Befanhi quá trình chuyển dòng đồng chảy được tạo thành và phát triển qua ba giai đoạn:

1. Giai đoạn tạo đong: từ lực mưa rơi đến khi bắt đầu có dòng chảy xuất hiện.

2. Giai đoạn dòng chảy suón đóc: từ lực bắt đầu có dòng chảy đến lúc hết lực hoạt động của dòng chảy trên bề mặt suón đóc của lưu vực. Trên suón đóc dòng chảy tồn tại dưới các dạng khác nhau, nhưng cùng chung một bản chất vật lý.

3. Giai đoạn dòng chảy trong sông ngòi được xét từ lực nước bắt đầu nhập vào sông và hệ thống sông, cùng tuân theo các qui luật của phương trình liên tục và phương trình cân bằng chuyển động.

Các bước chung minh vẫn để xảy ra lơ lửng được xét qua các giai đoạn dòng chảy.

2.4.1. Giai đoạn tạo dòng

Giai đoạn tạo dòng bắt đầu từ lực mưa rơi trên lưu vực. Hạt nước rơi xuống mặt đất, thẩm vào lòng đất làm tăng độ ẩm của đất đainen tích tụ và tạo thành dòng chảy. Để có thể tạo dòng từ mưa ngay từ lúc xuất hiện cần phải thoả mãn một số điều kiện.

Xét một đoạn suơn đóc có mưa rơi với lượng ố $a(t)$ và thẩm với lượng $i(t)$. Xuất hiện 2 khả năng:

1. $a(t) > i(t) \rightarrow$ xuất hiện ngay dòng chảy. Và có thể viết công thức tạo dòng như sau:

$$a(t) - i(t) = h(t)$$
với \(a(t) \) là cường độ mực rơi trong thời gian \(t \), \(i(t) \) là cường độ thẩm trong thời gian \(t \), thì \(h(t) \) gọi là cường độ tạo dòng.

2. \(a(t) \leq i(t) \rightarrow \) chưa xuất hiện dòng chảy, và mực rơi bao nhiều thì thẩm hết bấy nhiêu, sau một thời gian nào đó đủ để bão hòa nước trong tầng sâu đạt đến bệt đầu xuất hiện dòng chảy mặt, tất cả lượng mực rơi đều tạo thành dòng chảy và lúc đó

\[
a(t) = h(t).
\]

Phương trình (2.31) là một dạng của phương trình liên tục.

2.4.2. Giai đoạn dòng chảy trên đốc

Sau giai đoạn tạo đập đầu giai đoạn dòng chảy trên đốc. Theo điều kiện hình thành dòng chảy trên đốc nơi ta phân biệt có 4 dạng dòng chảy cơ bản như sau:

- **Dòng chảy treo.** Ta xét một bài toán cụ thể:

![Hình 2.5. So đố cân cần nước trong giai đoạn dòng chảy trên đốc](image)

Cho một đoạn đốc dài \(dx \) có mực rơi \(a(t) \) với cường độ, cường độ thẩm của đập là \(i(t) \) trong thời gian là \(dt \). Gọi diện tích thiết diện ở đoạn là \(a(t) \) (H.2.5). Cường độ thẩm tại tầng thủy hai là \(k(t) \). Lưu lượng nhập tại mặt cắt A-A là \(Q_1 \), lưu lượng tại đầu ra B-B là \(Q_2 \).

Diều kiện để tồn tại dòng chảy treo là:

\[
\begin{align*}
 a(t) &> i(t) \quad \text{và} \quad a(t) - i(t) = h(t) \quad \text{để tạo dòng chảy mặt.} \\
i(t) &>> k(t) \quad \text{để không thẩm xung tầng sâu.}
\end{align*}
\]

Phương trình cân bằng nước viết cho đoạn \(dx \) trong thời gian \(dt \) như sau:

\[
Q_1 dt + \frac{\partial Q}{\partial x} dx dt = Q_2 dt . \tag{2.32}
\]

Mặt khác nguyên nhân làm thay đổi cân cần nước trong đoạn \(dx \) là do mực tạo nên:

\[
Q_1 dt + h(t) dx dt - \frac{\partial \omega}{\partial t} dx dt = Q_2 dt . \tag{2.33}
\]

Thành phần \(\frac{\partial \omega}{\partial t} dx dt \) là biến đổi thiết diện ở trên đoạn \(dx \) trong thời gian \(dt \).

Từ (2.32) và (2.33) ta có:

\[
\frac{\partial Q}{\partial x} + \frac{\partial \omega}{\partial t} = h(t) . \tag{2.34}
\]
Phương trình (2.34) có dạng là phương trình liên tục.

Đồng chảy trong cũng với các điều kiện do sự dốc như ở dạng dòng chảy treo, để có dòng chảy dẫn đến thời mãn các điều kiện sau:

\[
\begin{align*}
& a(t) < i(t) \quad \text{để không có dòng chảy treo.} \\
& X(t) > \delta H; \quad KJ \approx 0 \\
& i(t) >> k(t)
\end{align*}
\]

với \(X(t)\) - lượng nước mủ; \(\delta H\) - độ rỗng của đất trong tandem sâu \(H\); \(KJ\) - vận tốc chảy theo phương nằm ngang trong đất.

Đồng chảy trong trường hợp này xuất hiện như sau. Khi chưa bão hòa nước trong đất \(X(t) \leq \delta H\) thì chưa xuất hiện dòng chảy suơn dốc. Lượng nước mủ chỉ cung cấp nhằm bão hòa đất. Khi độ hệ số dòng chảy \(\eta = 0\); Lực bắt đầu xuất hiện dòng chảy thì mủ bao nhiêu tạo thành dòng chảy suơn dốc bấy nhiêu, lực để hệ số dòng chảy \(\eta = 1\).

Phương trình dòng chảy việt cho giai đoạn này như sau:

\[
\frac{\partial Q}{\partial x} + \frac{\partial \omega}{\partial t} = a(t) - i(t) = h(t) \quad \text{với} \quad i(t) = 0 \quad \text{nên} \quad a(t) = h(t)
\]

\[
\frac{\partial Q}{\partial x} + \frac{\partial \omega}{\partial t} = a(t) . \tag{2.35}
\]

Phương trình (2.35) cũng là phương trình liên tục.

Đồng chảy trong lợp cuối sỏi. Trong trường hợp \(a(t) < i(t)\) để không tồn tại dòng chảy treo, \(KJ \neq 0\), tổng đất đã chứa các hạt vật chất lớn, \(k(t) \neq 0\); tồn tại dòng chảy lợp sát mặt đất gọi là dòng chảy trong hành lang cuối sỏi. Nhiều nhà nghiên cứu đã chứng minh rằng, vận tốc dòng chảy trong hành lang cuối sỏi không khác nhiều so với dòng chảy mặt.

Phương trình đồng chảy trong lợp cuối sỏi có thể viết là:

\[
\frac{\partial Q}{\partial x} + \frac{\partial \omega}{\partial t} = KJ ,
\]

giả sử \(v \approx \text{const}\), mà \(Q = \omega v\) ta có:

\[
v \frac{\partial \omega}{\partial x} + \frac{\partial \omega}{\partial t} = KJ . \tag{2.36}
\]

Công thức (2.36) cũng thể hiện là một phương trình liên tục.

Đồng chảy trong lợp đất tại xốp tồn tại với điều kiện: \(a(t) < i(t)\) để không tồn tại dòng chảy treo, \(KJ \neq 0\) để tồn tại dòng theo phương nằm ngang, \(X(t) < \delta H\) để không có dòng chảy tràn. Phương trình trong trường hợp này có thể viết như sau:

\[
\frac{\partial Q}{\partial x} + \frac{\partial \omega}{\partial t} = i(t) - k(t). \tag{2.37}
\]

Phương trình (2.37) là phương trình liên tục.

Nếu vậy cả bốn dạng dòng chảy trên suơn dốc từ các công thức (2.34, 2.35, 2.36, 2.37) đều thể hiện là một phương trình liên tục.

2.4.3. Giai đoạn dòng chảy trong sông ngòi

Giai đoạn dòng chảy trong sông ngòi được xẩy d oben theo lý thuyết Befanbi gồm có hai pha chính:
Dòng chảy trong lòng sông cơ sở: Lòng sông cơ sở được hiểu là các lưu vực bé, với phê mô hình hóa có thể coi lưu vực như một hình chữ nhật có chiều dài đơn vị L, nhánh lưu là q, độ rộng là B, chiều dài lưu vực là L. Công thức mô tả dòng chảy trên lưu vực cơ sở có thể viết như sau:

$$\frac{\partial Q}{\partial x} + \frac{\partial \omega}{\partial t} = q(t)$$ \tag{2.38}

hoặc với $v \approx \text{const}$ thì (2.38) có thể viết:

$$v \frac{\partial \omega}{\partial x} + \frac{\partial \omega}{\partial t} = q(t).$$ \tag{2.39}

Dòng chảy trong hệ thống sông ngòi: Với hệ thống sông ngòi ta coi như là một tập hợp n các lòng sông cơ sở. Mỗi lưu vực sông cơ sở có hai suơn độc có chiều dài bằng $2l$, phương trình vi phân l có dạng:

$$\frac{\partial Q}{\partial x} + \frac{\partial \omega}{\partial t} = nq(t).$$ \tag{2.40}

Gọi α là mặt độ sông suối trên lưu vực, tức là:

$$n = \frac{B(x)}{2l} = \alpha B(x).$$ \tag{2.41}

Thế (2.41) vào (2.40) ta được:

$$\frac{\partial Q}{\partial x} + \frac{\partial \omega}{\partial t} = \alpha B(x)q(t).$$ \tag{2.42}

$B(x)$ là chiều rộng của lưu vực hệ thống sông. Phương trình (2.4.2) cũng là phương trình liên tục. Từ (2.31 - 2.42) là các phương trình mô tả sự hình thành dòng chảy từ khi thành tạo đến vận chuyển trong hệ thống sông ngòi đều có dạng là phương trình liên tục. Vậy, bản chất vật lý của dòng chảy là một quá trình liên tục. Lời giải của các phương trình này sẽ được bàn tiếp ở chương 7.

2.5. CÔNG THỨC CẢN NGUYÊN CỦA DÒNG CHÁY

2.5.1. Khái niệm về đường cong chảy truyền

Lưu lượng nước do tại một mặt cắt nào đó là biểu thị đặc trưng dòng chảy của toàn bộ lưu vực mà nó không chứa. Trong các bài toán về dòng chảy cực đại người ta thường sử dụng đường cong tập trung nước dòng thời cơn gió là đường cong chảy truyền.

Đường cong chảy truyền là đường nối tất cả những điểm của bồn thu nước mà từ đó nước dòng thời chảy đến tận cùng không chế.

Đường cong chảy truyền tham gia vào rất nhiều công thức tính toán dòng chảy cực đại, nhiều mô hình dự báo lưu và được sử dụng rất phổ biến trong việc mô hình hóa các quá trình thủy văn.

2.5.2. Thành lập công thức cần nguyên dòng chảy

Sử dụng đường cong chảy truyền và xét một lưu vực (H.2.6) có sơ đồ phân bố các đường cong chảy truyền. Giả sử trên lưu vực có mực độ với các lượng nước gia nhập là P_1, P_2, P_3 thì ta có thể mô tả sơ đồ hình thành lưu lượng nước tại tuyến không chế N như sau:

$$Q_1 = P_1f_1$$
$$Q_2 = P_2f_2 + P_3f_1$$
$$Q_3 = P_3f_3 + P_2f_2 + P_1f_1$$

26
\[
Q_4 = P_1f_4 + P_2f_3 + P_3f_2 \\
Q_5 = P_1f_5 + P_2f_4 + P_3f_3 \\
Q_6 = P_2f_5 + P_3f_4 \\
Q_7 = P_3f_3 .
\]
Viết dưới dạng tổng quát ta có:
\[
Q_i = P_1f_i + P_2f_{i-1} + \cdots + P_if_1 = \sum_{k=1}^{i} P_kf_{i-k+1} = \sum P_{i-k+1}f_i , \tag{2.43}
\]

Hình 2.6. Lưu vực sông và sơ đồ đường cong chảy truyền

Công thức (2.43) gọi là công thức cần nguyên dòng chảy. Công thức cần nguyên dòng chảy chỉ ra quỹ luật tập trung nước trên lưu vực đến phạm vi không chế với điều kiện sự cập nước dòng chảy xảy ra trên toàn bộ lưu vực và trên mỗi đơn vị thời gian (ngày, giờ) với cường độ như nhau.

Công thức cần nguyên dòng chảy được sử dụng làm cơ sở ban đầu cho nhiều mô hình tổan thủy văn như mô hình lưu truyền tính, mô hình Nash,... và tham gia vào nhiều công thức tính toán dòng chảy cực đại mà chúng ta sẽ cún gặp lại ở các chương sau.
3.1. PHƯƠNG TRÌNH CÂN BẰNG NƯỚC DÀNG TỔNG QUÁT

Lấy một lưu vực bất kỳ trên mặt đất với giới thiet có một mặt través thường đường bao quanh chu vi lưu vực do tối tảng không thẩm nước (H.3.1). Chọn một thời đoạn Δt bất kỳ. Dựa trên nguyên lý cân bằng nước giữa các thành phần denen, trư và đi ta có phương trình cân bằng nước.

Phân nước den bao gồm:
- X - lượng mưa bình quân trên lưu vực,
- Z_1 - lượng nước ngưng tụ trên lưu vực,
- Y_1 - lượng dòng chảy mặt den,
- W_1 - lượng dòng chảy ngầm den,
- U_1 - lượng nước trừ đầu thời đoạn Δt,

Phân nước đi gồm có:
- Z_2 - lượng nước bốc hơi trên lưu vực,
- Y_2 - lượng dòng chảy mặt chảy đi,
- W_2 - lượng dòng chảy ngầm chảy đi,
- U_2 - lượng nước trừ cuối thời đoạn Δt.
Phương trình cân bằng nước tổng quát có dạng:

\[X + Z_1 + Y_1 + W_1 - (Z_2 + Y_2 + W_2) = U_2 - U_1 \]
(3.1)

hoặc là:

\[X + (Z_1 - Z_2) + (Y_1 - Y_2) + (W_1 - W_2) = \pm \Delta U \]
(3.2)

trong đó \(\Delta U = U_2 - U_1 \).

Để sử dụng phương trình (3.1) và (3.2) cần đưa tất cả thành phần của cân cân nước về cùng một đơn vị thủ nguyên.

3.2. PHƯƠNG TRÌNH CÂN BẰNG NƯỚC CHO MỘT LƯU VỤ SÔNG NGÔI

Các lưu vực sông thường được giới hạn bằng dạng đường phân nước lưu vực. Tái đường phân nước không có sự trao đổi dòng chảy từ ngoài vào và từ trong ra. Nước có thể ra ngoài lưu vực qua mặt cắt của sông. Trong tự nhiên thu nước mặt và thu nước ngầm hoàn toàn không trùng nhau nhưng vì khó xác định ranh giới độ nên thường trong các tính toán đều giả thiêng nó trùng nhau. Thường đối với các lưu vực lớn giả thiết đó có thể chấp nhận được, nhưng với các lưu vực bé có hiện tượng karst thì điều này có thể dẫn tới sai sót lớn khi tính toán. Do vậy cần có phương trình cân bằng nước cho lưu vực kin và lưu vực hở.

3.2.1. Phương trình cân bằng nước cho lưu vực kin

Lưu vực kin là lưu vực có đường phân chia nước mặt trùng với đường phân chia nước ngầm, khi đó không có nước mặt và nước ngầm từ lưu vực khác chảy đến, tức là từ (3.2) ta có \(Y_1 = 0 \) và \(W_1 = 0 \); nước chảy ra cửa qua mặt cắt là \(Y_2 \) và \(W_2 \), đạt \(Y = Y_2 + W_2 \), \(Z = Z_2 - Z_1 \) là hiệu lượng bổ hoa vắng từng, ta có:

\[X = Y + Z \pm \Delta U \]
(3.3)

3.2.2. Phương trình cân bằng nước cho lưu vực hở

Đối với lưu vực hở sẽ có lượng nước ngầm từ lưu vực khác chảy vào và ngược lại, khi đó phương trình cân bằng nước sẽ có dạng:

\[X = Y + Z \pm \Delta W \pm \Delta U \]
(3.4)

trong đó \(\pm \Delta W = W_2 - W_1 \).

3.3. PHƯƠNG TRÌNH CÂN BẰNG NƯỚC LƯU VỤ CHO THỜI KỲ NHIỀU NĂM

Phương trình cân bằng nước dạng (3.3) và (3.4) được viết cho thời đoạn bất kỳ \(\Delta t \) bằng một năm, một tháng, một ngày hoặc nhỏ hơn nữa. Để viết phương trình cân bằng nước cho thời kỳ nhiều năm, người ta có thể lấy bình quân nhiều năm phương trình trên với thời đoạn năm.

Từ công thức (3.3) xét trong \(n \) năm ta có:

\[\frac{\sum_{i=1}^{n} X_i}{n} = \frac{\sum_{i=1}^{n} (Y_i + Z_i \pm \Delta U_i)}{n} \]
(3.5)

hoặc:

\[\frac{\sum_{i=1}^{n} X_i}{n} = \frac{\sum_{i=1}^{n} Y_i}{n} + \frac{\sum_{i=1}^{n} Z_i}{n} + \frac{\sum_{i=1}^{n} \pm \Delta U_i}{n} \]
(3.6)
Bồi công thức $\sum \pm \Delta U_i$ đạt giá trị xấp xỉ bằng không do có sự xê xích giữa những năm Nhiều nước và ít nước phương trình (3.6) trở thành dạng:

$$X_0 = Y_0 + Z_0$$

(3.7)

trong đó

$$X_0 = \frac{1}{n} \sum_{i=1}^{n} X_i; \quad Y_0 = \frac{1}{n} \sum_{i=1}^{n} Y_i; \quad Z_0 = \frac{1}{n} \sum_{i=1}^{n} Z_i$$

là các giá trị bình quân nhiều năm của mua, dòng chảy và bốc hơi. Nếu n đủ lớn thì X_0, Y_0, Z_0 giống là chuẩn mua, dòng chảy và bốc hơi năm.

Đối với lưu vực hồ, từ (3.4) với các cách làm tương tự nhân được phương trình cân bằng nước dạng (3.8)

$$X_0 = Y_0 + Z_0 \pm \Delta W_0.$$

(3.8)

Trong trường hợp lưu vực hồ giá trị nhiều năm của $\pm \Delta W$ không tiến tới 0 được, bởi vì sự trao đổi nước ngầm giữa các lưu vực thường không cân bằng, phân lớn chỉ xảy ra theo một chiều.

3.4. PHÂN TÍCH CÁC NHÂN TỐ ẢNH HƯỞNG ĐẾN ĐỒNG CHÂY SÔNG NGỐI THÔNG QUA PHƯƠNG TRÌNH CÂN BẰNG NƯỚC

Trừ phương trình cân bằng nước dạng (3.3 - 3.8) có thể rút ra sự phụ thuộc giữa đồng chảy sông ngôị và các thành phần hình thành của nó theo dạng tổng quát:

$$Y = f(X, Z, \Delta W, \Delta U).$$

(3.9)

Rõ ràng đồng chảy sông ngôị phụ thuộc vào nhiều nhân tố thông qua các biến nằm ở cả phía của phương trình (3.9). Các nhân tố cũng bao gồm hai nhóm: khí hậu và mặt đêm.

Nhân tố khí hậu phản ảnh bằng các trưng mua (X) và bốc hơi (Z), mà lượng mua và chế độ mua cũng như bốc hơi và chế độ bốc hơi lại phụ thuộc nhiều vào nhân tố khí hậu khác như chế độ nhiệt, chế độ ám, chế độ gió... Ngoài ra mùa và bốc hơi còn phụ thuộc vào nhân tố mặt đêm (như dự phán tích ở trên) như địa hình, lộ trình thực vật (đối với mua) và thêm các nhân tố thời tiết, địa chất, tình trạng canh tác và khai thác của con người (đối với đặc trưng bốc hơi). Kết quả mặt đêm cũng ảnh hưởng trực tiếp đến chế độ nhiệt, gió, ám... Bởi vậy, có thể nói mùa và bốc hơi là sự phản ảnh tổng hợp sự ảnh hưởng của nhân tố khí hậu và mặt đêm đến đồng chảy sông ngôị.

Thành phần ΔW chủ yếu phản ảnh điều kiện địa chất của lưu vực đến dòng chảy sông ngôị. Đối với các lưu vực kinh, thường các lưu vực không có hiện tượng karst, hoặc là các lưu vực lớn có độ sâu cắt nước ngầm lớn $\Delta W = 0$. Đối với các lưu vực nhỏ hoặc có hiện tượng đất thuộc loại lưu vực hồ sẽ có $\Delta W \neq 0$.

Thành phần ΔU phản ứng mức độ điều tiết của lưu vực đến dòng chảy tự nhiên của lưu vực trong một đoạn nhất định và sự cung cấp lượng nước thực tế đã trong thời đoạn tiếp theo. Khả năng điều tiết của lưu vực phụ thuộc vào điều kiện địa chất, thời tiết, lộ trình thực vật, diện tích lưu vực, hồ ao, đầm và những tác động của con người. Diện tích lưu vực càng lớn thì khả năng điều tiết càng lớn: thời tiết lá do thời gian tập trung nước và ở vị trí khác nhau ra tuyến của ra có sự chuyên lệ lơn; hai là do nước mặt; và các tầng nước ngầm có thời gian tập trung không đồng đều; ba là do diện tích lưu vực lớn, độ cắt sâu của lòng sông lớn nên trú lượng nước ngầm của lưu vực cũng lớn.

Rừng và ao hồ có khả năng trữ nước và làm chậm sự vận chuyển của nước mặt ra tuyến của ra; còn điều kiện địa chất, thời tiết sẽ ảnh hưởng đến tương tác giữa nước mặt và nước ngầm. Các hoạt động...
kinh tế của con người như làm hồ nhận tảo, phá rừng, tập quán và phương thức canh tác có thể làm giảm hoặc làm tăng khả năng điều tiết dòng chảy của lưu vực.

Vi mưa thường xảy ra trong thời gian ngắn, mà dòng chảy thì tập trung về tuyến của ra sau một thời gian dài, bởi vậy sự thay đổi lượng từ ΔU so với lượng dòng chảy Y với thời gian ngắn và dài cũng khác nhau. Đối với thời đoạn ngắn thì ΔU chiếm tỷ trọng lớn so với Y vì khi do lượng mưa sinh dòng chảy chưa tập trung hết ra tuyến của ra, còn thời đoạn dài thì số bù độc trình ngước lại. Nếu thời đoạn là nhiều năm thì ảnh hưởng của ΔU sẽ không còn nữa.

Phân tích ảnh hưởng của các nhân tố mặt đệm và khí hậu đến dòng chảy sông ngòi đặc biệt có ý nghĩa khi lựa chọn phương pháp tính toán thủy văn cho những lưu vực có ít và không có tài liệu được trình bày trong các chương sau.

3.5. PHƯƠNG TRÌNH CẦN BẰNG NƯỚC AO HÔ, ĐẨM LÂY

3.5.1. Phương trình cần bằng nước cho ao hôi

Phương trình cần bằng nước hồ chứa có dòng chảy có thể thể hiện dưới dạng:

$$X' + Y_1 + W_1 - Z' - Y_2 - W_2 = \Delta U'.$$ (3.10)

trong đó X', Z', $\Delta U'$ là lượng mực, nước hội và thay đổi từ lượng nước của hồ; Y_1, W_1 là lượng nước mặt và nước ngầm chảy vào hồ; Y_2, W_2 là lượng nước mặt và nước ngầm từ hồ chảy ra.

Đối với hồ chứa không có dòng chảy thì Y_2, W_2 bằng 0 và phương trình cần bằng nước có dạng:

$$X' + Y_1 + W_1 - Z' = \Delta U'$$ (3.11)

Nếu viết phương trình cần bằng nước cho thời kỳ nhiều năm đối với hồ thì $\Delta U' \approx 0$ và đối với những hồ lớn thì thành phần dòng chảy ngầm hoàn toàn không đáng kể so với dòng mặt nên (3.10) và (3.11) có dạng:

$$X' + Y_1 - Y_2 - Z' = 0$$ (3.12)

và

$$X' + Y_1 - Z' = 0.$$ (3.13)

3.5.2. Phương trình cần bằng nước cho đầm lây

Vị trí của đầm lây trên lưu vực sông ngòi ảnh hưởng trực tiếp tới cần cân nước của nó. Ta xét trường hợp đầm lây ở hạ lưu và thượng lưu.

Phương trình cần bằng nước cho đầm lây ở lưu vực có dạng:

$$X'' + Y_1' + Y_1'' + W_1 - Y_2 \pm Y_6 - Z'' = \Delta U''$$ (3.14)

với X'' - lượng mưa trên đầm lây; Y_1 - dòng nước mặt theo sông, suối vào đầm lây; Y_1' - dòng nước mặt từ bể mặt lưu vực lần đầu vào đầm lây; W_1 - dòng chảy ngầm đến đầm lây; Y_2 - dòng mặt ra khỏi đầm lây; Y_6 - trao đổi nước theo chiềuضح đúng; Z'' - bỏ hơi từ đầm lây; $\Delta U''$ - sự thay đổi từ lượng ΔU trong đầm lây.

Còn phương trình cần bằng nước đối với đầm lây thượng lưu không có lượng nước gia nhập khu giữa nên có thể viết:

$$X'' - Y_2 - Z'' = \Delta U''.$$ (3.15)
3.6. CÂN CÂN NƯỚC VIỆT NAM

3.6.1. Tài nguyên nước toàn lãnh thổ

Trên lãnh thổ Việt Nam hàng năm tiếp nhận một lượng mưa trung bình là 1900 mm, tính ra khối lượng là 634 tỷ m³ nước. Trong đó đi vào hình thành dòng chảy sông ngòi là 953 mm hoặc 316 tỷ m³ nước, như vậy hệ số dòng chảy là 0,50. Trong đó toàn bộ dòng chảy trong sông ngòi chiếm khoảng 34% hay 107 tỷ m³ nước hay 324mm, còn lại 66% là dòng chảy mặt bằng khoảng 629 mm hay 209 tỷ m³ nước. Dự trữ nước trong đất là 426 tỷ m³ nước hoặc 67% của mưa (1285 mm). Việt Nam thuộc vào nhóm những nước có tài nguyên nước tại chỗ giàu có, ngoài ra còn thu nhập nước ngoài là Trung Quốc, Lào, Campuchia là 132,8 tỷ m³/năm. Đặc biệt đối với hai dòng sông Bắc Bộ và Cửu Long, chúng ta không thể tiến hành nông nghiệp thảm canh nếu không có nguồn nước này vào mùa khô, song vào mùa lũ nguồn nước này cũng gây ra những khó khăn không nhỏ.

Xét về phương diện mức độ bão điều tốt theo đầu nước, Việt Nam được hàng thứ 10 trong các nước chịu Á với 6000 m³/năm, dòng chảy sông núi vào loại trung bình, song về mức độ bão nước ngầm lại vào loại thấp.

Nur đại biế, Việt Nam là nước có nghề trồng lúa nước sớm ở Đông Nam Á. Cho tới nay đạt nóng 4015 triệu ha trong đó 80% là lúa và mầu. Diện tích được nuôi nước là 4,4 triệu ha, nên ta lấy tiêu chuẩn nước là 12800 m3 cho hai vụ lúa, thì 2,9 triệu ha lúa sẽ sử dụng 37 tỷ m³ nước lúa từ sông, nghĩa là bằng 12% toàn bộ dòng chảy sông ngòi và 35% dòng chảy ngầm. Theo tiêu chuẩn của Liên Hợp Quốc (FAO) chỉ nên sử dụng 1/3 lượng nước đầm. Diện độ xuất phát từ sự duy trì kinh tế kỹ thuật vào báo về môi trường. Do vậy, chúng ta có thể thấy rằng: giải quyết các vấn đề nước ở Việt Nam gắn liền với sự điều hòa trong phân phối các nguồn nước mà ở một số vùng kinh tế vấn đề đặt rất gay cấn.

3.6.2. Tài nguyên nước theo 7 vùng kinh tế nông nghiệp

Theo Phạm Quang Hạnh, vùng đời nước Bắc Bộ gồm toàn bộ vùng đệm từ vị tuyến 21 trớ ra. Diện tích của vùng 98,2 nghìn km² với dân số 8 triệu. Vùng này bao gồm các kiểu cảnh quan từ rừng mưa rừng lạnh, rừng kinh thương xanh mャm niệm do đối o cùng với rừng kinh thương xanh mャm niệm do. Đặc điểm chung của các kiểu cảnh quan này là sự có mặt của mùa khô hạn và ám. Vùng kinh tế Bắc Bộ có tài nguyên nước phong phú. Lượng dòng chảy toàn phần 948 mm, lượng nước ngầm 354 mm, lượng trữ ấm 1124mm, tổng tượng ứng với khối lượng nước: dòng chảy sông ngòi 93 tỷ m³, dòng chảy ngầm 35 tỷ m³ và nước trong đất 120 tỷ m³. Do sự tập trung của lúa, dòng chảy mặt đất 594 mm ứng với 58 tỷ m3 nước. Mức độ bão nước ngầm ngay quốc tế đầu đề lúa là 4,3 nghìn m3 trong năm. Trong đại diện đời này chia cắt, phát triển công nghiệp có tự o đây bị hạn chế. Vì vậy lượng nước trong đất có yếu nghĩa lớn và vai trò của lợp phò thực vật với tự cách điều tiết nước trong đất vai trò quan trọng đối với canh tác không được nước trong mùa khô. Đối với vùng này việc tổ chức kệ kinh trong không gian các cây trồng nông nghiệp và làm nghiệp như những đại vùng mưa phong hóa và mưa khí thạch là hết sức tối ưu. Vùng này thuộc khu vực nước đồng của sông vùng. Trong vùng này đã xây dựng một hồ chứa lớn như Thác Ba trên sông Chảy với dung tích 3,6 tỷ m³ nước. Những hồ chứa này tạo ra những nguồn thủy điện quan trọng đối với sự phát triển kinh tế o đồng bằng và trung du Bắc Bộ.

Vùng dòng bằng Bắc Bộ với diện tích 17,4 nghìn km² và dân số 11,8 triệu người, một vùng đền dân nhất Việt Nam. Diện tích trong lúa chiếm tới 43% tổng diện tích, bằng 751 nghìn ha, song nguồn nước địa phương không lớn. Lớp dòng chảy sông ngòi địa phương 762 mm, dòng chảy ngầm vào sông 354 mm, dòng chảy trong đất 1179 mm, tương ứng khối lượng nằm 13 tỷ m³, 3 tỷ m³ và 20 tỷ m³, tính theo đầu người. Độ tiến hành vai lúa trên diện tích 751,000 ha, riêng mùa khô cánh tới 9,6 tỷ m³ nước chủ yếu là nước
ngất trong sông. Song nước ngất trong sông đa phương chỉ có 3 tỷ m³, còn lại 6,6 tỷ m³ nước phải lấy từ nguồn nước ngất ngoài lại, mà chúng ta có 40 tỷ m³. Giữa lúc khô hạn, số nước ngoài lại không chỉ cần cho tương mà còn cần cho sinh hoạt, công nghiệp, các loại thủy điện và chumo nhãm mạn do thuy triều. Nguồn nước sông đẩy mạn của ngoài lại được đưa vào từ thời Mười lục, lượng nước sông đẩy mạn phải tiêu trên 75 tỷ m³, dòng chảy mạn ngoài lại thường khi qua Thủ đô Hà Nội, do độ trong trường hợp nguy hiểm phải thảo nước qua đập Day lam trên ngập phần phía Đông của dòng sông.

Vùng kinh tế thủ thể đánh giá từ 29° và 15° vĩ Bắc với diện tích 52.000 km² và dân số 7.4 triệu người. Diện tích đất nông nghiệp không cao. Song vùng này dường thứ 2 về độ giàu nước. Lớp dòng chảy sông ngậu 1338 mm, dòng ngậu 424 mm, lượng nước ổn định 1206 mm ứng với khối lượng 69 tỷ m³, 22 tỷ m³ và 63 tỷ m³. Mức bao đa được tính theo đầu người, dòng chảy sông ngậu là 9,3 nghìn m³ và 3 nghìn m³ dòng chảy ngậu. Động về mặt sinh thái cây cỏ, vùng này có mùa khô ngắn và các cấu trúc các thành phần cần cẩn nước theo tiêu cân quan rộng lớn thuộc dãy núi núi Nhiệt đới. Nhưng mức độ tập trung của dòng chảy mạn ngoài lại với 1921 km³, 47 tỷ m³ - 63% dòng chảy cho phép phân phối số người đến của dân cư. Có điều kiện thuận lợi là ở độ thủy tạ của những sông chảy trong thời gian ngắn, do độ dốc it.

Vùng kinh tế thủ tư là vùng thuận lợi để tại nguyên nước với mức độ đảm bảo nước theo đầu người 11,8 nghìn m³ dòng chảy sông ngậu và 3,3 nghìn m³ dòng chảy ngậu. Về khởi lượng nước các loài gồm 68 tỷ m³ dòng chảy sông ngậu, 19 tỷ m³ dòng chảy ngậu và 40 tỷ m³ nước trong đàm ứng với các lớp dòng chảy 1524 mm, 424 mm và 900 mm. Vùng này bao gồm nhiều dòng sông nhỏ ngắn bơi các đầy nửa đầy ngang. Hai hệt đất đai canh tác trên các thêm phù sa có hiện đại. Do địa hình tiêu hoá tốt và đất đai có thành phần cơ giới nhẹ nên hệ nặng là hạn, hệ mưa là lu. Vùng này rất cần các hồ chứa nhỏ để tiêu tiết và cũng rất thuận lợi cho sự phát triển các loại này. Đây là vùng đầu tiên ở nước ta đã nhận được nước chuyển từ các hệ thống sông Đông Hải về dòng sông chảy trên khẩu quan hệ thống thủy điện Đà Nhím. Trên một khu vực dòng sông không rừng, sự phối hợp của núi hùng vi và dòng lưu xanh đậm, những hồ không sâu, nước trong hòa với màu xanh của biển đã làm cho vùng này có vẻ đẹp khó tả.

Vùng kinh tế thủ nam nằm trên cao nguyên sườn Tây Trưởng Sơn. Cấu trúc của các thành phần cần nước giống với vùng kinh tế thủ nhất. Lớp dòng chảy sông ngậu 902 mm, nước ngậu 345 mm và nước trong đàm 1502 mm. Đạt mở đo đắn phải nên nước tỉnh theo đầu người rất cao, 35,2 nghìn m³ dòng chảy sông ngậu và 13,4 nghìn m³ dòng chảy ngậu. Đây là vùng đầu nguồn của các sông đó vào sông Mẹ Kông. Bắt nguồn từ những cao ro để đổ vào nguồn này, chế độ dòng chảy sông phức tạp, nhiều khi trôi phai với dòng chảy đa phương khi về đến hạ lưu. Điều đó sẽ làm cho việc điều tiết rất phức tạp, đặc biệt đối với các đập an toàn. Thủy lợi nhỏ ở đây rất thích hợp và hiệu quả kinh tế cao, thì dụ như: nước dara từ đập thủy điện Đà Nhím về dòng sông Phan Rang ven chua được sử dụng một cách hợp lý, một phần vì đập ở đây kém hiệu suất, lao động còn quá ít. Vùng kinh tế này là vùng độc nhất của nước ta có địa hình cao nguyên bằng phẳng, trên đó phù palazam có tuổi khắc nhau. Song do sự cút mặt của mỏ khô rộng và phần hoà rất phức tạp (tuy thuộc vào hường son ven và đà oao), nên tiềm năng của đà đai chi trở thành hiện thực khi mía khô do điều tự bất khả năng thẩm nước và giữ nước của địa hình và đà. Một điều đáng lưu ý ở đây là ở những nơi có đập bazan trên thượng là nơi có mạng lưới sông phát triển yếu, địa hình kém chạy cắt và do đó vấn đề điều tiết bì sông lũ lớn kém hiệu hưu. Theo dự án của sông Mẹ Kông và của miền, vùng này có thể xây dựng 34 công trình thủy lợi, thủy điện tổ ưu về mặt kinh tế kỹ thuật. Theo những số liệu tình hình: Tây Nguyên hàng năm có 50 tỷ m³ nước sông ngoài trong đó dòng chảy mất 31 tỷ m³ và 19 tỷ m³ dòng chảy ngậu. Số 34 công trình hồ chứa lớn có thể điều tự được 23 tỷ m³ nước, còn lại 8 tỷ m³ nước có thể điều tự được bằng các hồ chứa nhỏ. Các công trình lớn có thể thiếu 307400 ha và cho 3679 megawatt điện. Như vậy diện tích được tự chi bảng 1/20 diện tích của vùng trong khi vùng được tự thiếu lại chưa phải là vùng đất màu mỡ, các vùng đất bazan lại thiếu nguồn nước. Hướng phát triển các vùng chính là xây dựng các bể
chứa nhở kết hợp với thủy điện nhỏ đằng nước, xây dựng quy trình trông trẻ theo hướng nông làm kết hợp với các biện pháp tổ chức cây trồng nhằm giữ ẩm chống bốc hơi và các hiện tượng khô hạn cụ thể đoạn.

Vùng kinh tế thứ sáu là vùng tương đối nghèo nước, hàng năm thu nhận 12 tỷ m3 dòng chảy sông ngòi (479 mm) 6 tỷ m3 dòng chảy ngàn (242 mm) và 43 tỷ m3 nước trong đất (1845 mm). Sự ưu thế của địa hình thiên nhiên có, nhiều nơi phù hợp bazan đây với đối chia cắt yếu tố di chuyển thuận lợi cho phát triển cây cao su, cà phê, cây an qua. Để tuổi được 646 nghìn ha đất nông nghiệp hiện có cần 9 tỷ m3 nước với lương tuổi 14.000 m3/ha. Lượng nước yếu cầu cao như vậy cho thấy không thể phát triển các cây công nghiệp nếu không đặt vấn đề điều tiết và bảo vệ nguồn nước. Hiện nay trong vùng đang xây dựng công trình Đập Tiêng trên sông Bé và Trị An trên sông Đồng Nai. Hướng phát triển của vùng này giống như vùng 5.

Vùng kinh tế thứ ba là đồng bằng sông Mê Kông. Đò là vùng có tiềm năng nông nghiệp lớn, chiếm tới 50% đất nông nghiệp cả nước. Hiện nay trên 2,5 triệu ha cồn trồng một vụ trong mùa mưa. Nguồn nước sông ngòi dòng chảy cho 9 tỷ m3 trong đó có 2 tỷ m3 nước ngàn. Trong khi đó lượng nước ngoài lại đi vào 99,4 tỷ m3 nước sông ngàn và 33,4 tỷ m3 nước ngàn. Để đảm bảo cung cấp nước cho 2,5 triệu ha trong mùa khô cần tới 35 tỷ m3 nước, nhưng nguồn sông Mê Kông chỉ có thể lấy được 10 tỷ m3, (chỉ tháo mặn được 1/3 nhu cầu), bởi vì nhu yếu nhiều hơn sẽ xảy ra tai họa xâm nhập mặn của thủy triều và chất lượng nước do thải sẽ có nguy cơ bị độc

Trên đây chúng ta đã đánh giá tài nguyên nước của nhiều vùng kinh tế, và cũng đã thấy những vấn đề về nước đặt ra cho mỗi vùng. Song chúng ta không nhận thức hết những khó khăn về nước nên không xét tới đặc điểm biến động về tài nguyên nước của vùng nhiệt đới gió mùa, chỉ đặt vào phần này sẽ được cập ở chương 6.
4.1. ĐỊNH NGHĨA VÀ KHÁI NIỆM

Chuan các đặc trưng chê độ thủy văn là giá trị trung bình nhiều năm của nó với thời đoạn tính toán đủ nhiều sao cho khi tăng rewritten tính toán thì giá trị trung bình của chúng không thay đổi.

Để tiến chọn lựa người ta thường lấy một số chẩn các chu kỳ thay đổi của đặc trưng dạng xê. Thực tế để lấy chuẩn các đặc trưng chê độ thủy văn, độ dài chuội cần khoảng 40 - 60 năm.

Chuan dòng chảy năm là giá trị trung bình nhiều năm, bao gồm một vài chu kỳ thay đổi trọn vùng của đào dòng lượng nước sông với các điều kiện địa lý cảnh quanh không đổi và cùng với một mức khai thác hoạt động kinh tế trên bề mặt lưu vực.

Chuan dòng chảy năm là một đặc trưng ổn định, là cơ sở để xác định quan trọng về tài nguyên nước của một lưu vực hay một vùng lãnh thổ. Nó như là một điểm tự hay là chuẩn mức để xác định các đặc trưng thủy văn khác.

Tính ổn định chuẩn dòng chảy năm được xác định bởi hai điều kiện:

1) Như là đại lượng trung bình nhiều năm hầu như không thay đổi nếu ta thêm vào chuỗi nhiều năm một với năm quan trọng.

2) Nó là hàm chủ yếu của các nhân tố khi hữu (lượng mưa và bốc hơi) kéo gi agréable trung bình của chúng, và chính các nhân tố này cùng là các đặc trưng khi hữu bền vững của lưu vực hay của vùng.

Chuan dòng chảy năm có thể thể hiện dưới dạng lưu lượng bình quân \(\bar{Q} \) (m\(^3\)/s), tổng lượng nước bình quân năm \(\bar{W} \) (m\(^3\)), modun dòng chảy trung bình năm \(\bar{M} \) (l/s.km\(^2\)), lop nước trung bình năm \(\bar{Y} \) (mm) cho toàn bộ diện tích lưu vực.

Các đặc trưng chuẩn dòng chảy năm biểu thị dưới dạng \(\bar{M} \) hoặc \(\bar{Y} \) mang tính địa điểm, tức là nó biểu đạt từ từ theo lãnh thổ và có thể lên bản đồ.

Phụ thuộc vào thông tin của chế độ sông với thời gian mà chuẩn dòng chảy năm có thể tính:

+ Theo số liệu đo đạc trực tiếp về dòng chảy sông ở thời gian đầu dài, đảm bảo độ chính xác khi xác định chuẩn dòng chảy năm.

+ Bảng cách dưới chuẩn dòng chảy trung bình quan trắc trong thời đoạn ngắn về chuỗi kéo dài của sông tương tự.

+ Khi hoàn toàn không có số liệu thì chuẩn dòng chảy năm xác định bằng việc khảo sát quá từng chuẩn dòng chảy năm các vùng khác hoặc trên cơ sở phương trình cân bằng nước.

Tuy nhiên việc có một chuỗi số liệu đủ dài là vô cùng quan trọng để đánh giá và tính toán chuẩn dòng chảy năm. Do chính là cơ sở để đánh giá chế độ nước tương lai khi thiết kế hồ chứa, đề điều, cấu cống và các công trình thủy khác. Đặc trưng dòng chảy được xác định bước đầu với trạng thái tự nhiên của sông ngòi sau đó dần được hiểu chính einige theo mức độ khai thác tài nguyên nước trên lưu vực.

4.2. XÁC ĐỊNH CHUẨN DÒNG CHÁY NĂM KHI CÓ DÀY Dù TÁI LIỆU QUAN TRÁC

Chuan dòng chảy năm cũng như một giá trị trung bình của chuỗi thông kê, xác định theo công thức:
\[
\bar{Q}_N = \frac{Q_1 + Q_2 + \cdots + Q_{N-1} + Q_N}{N} = \frac{1}{N} \sum_{i=1}^{N} Q_i
\]

với \(\bar{Q}_N\) - chuẩn độ chảy năm \(m^3/s\); \(Q_1, Q_2, \ldots, Q_{N-1}, Q_N\) - các giá trị dòng chảy năm cho thời kỳ nhiều năm \((N\) năm). Khi tăng tiếp tục chuỗi thời dài lưu trung bình số học \(\bar{Q}_N\) không thay đổi hoặc ít thay đổi.

Do đó chuỗi các chuỗi dòng chảy năm thực tế không đáp ứng được yêu cầu (không vượt quá 60-80 năm, mà thường là 20-40 năm) nên chuẩn độ chảy năm tính theo (4.1) thường sai khác giá trị \(\bar{Q}_N\) với \(N \to \infty\) một đại lượng \(\sigma_{Qn}\) nào đó, tức là:

\[
\bar{Q}_N = Q_{\text{th}} \pm \sigma_{Qn}
\]

với \(Q_{\text{th}}\) - dòng chảy năm theo dầy quan trách hữu hạn \(n\) năm; \(\sigma_{Qn}\) - sai số quan phương trung bình \(n\) năm.

Theo lý thuyết sai số, đại lượng \(\sigma_{Qn}\) phần ánh sai khác của giá trị trung bình \(n\) năm với chuẩn độ chảy năm \(\bar{Q}_N\) cho \(N\) năm với \(N \to \infty\) sẽ bằng:

\[
\sigma_{Qn} = \frac{\sigma_Q}{\sqrt{n}}
\]

với \(\sigma_Q\) - độ lệch quan phương trung bình giá trị đơn vị của dòng chảy năm \(Q_i\) với trị trung bình \(n\) năm hay là trung bình của binh phương độ lệch các thành viên của chuỗi giá trị dòng chảy năm \(Q_i\) với giá trị trung bình \(\bar{Q}_n\).

Xác định \(\sigma_Q\) theo công thức:

\[
\sigma_Q = \pm \sqrt{\frac{\sum (Q_i - Q_{\text{th}})^2}{n-1}}.
\]

Để so sánh độ chính xác của việc xác định chuẩn độ chảy năm sông ngòi có lượng nước khác nhau thường sử dụng sai số tương đối \(\sigma_n\) xác định theo công thức sau:

\[
\sigma_n = \frac{\sigma_{Qn}}{Q_{\text{th}}} \cdot 100 = \pm \frac{\sigma_Q}{Q_{\text{th}}\sqrt{n-1}} \cdot 100 = \pm \frac{C_v}{\sqrt{n}} 100\%
\]

với \(C_v = \sigma_Q/Q_{\text{th}}\) - hệ số biên độ chiếu giá trị dòng chảy năm cho \(n\) năm.

Hệ số biên độ dòng chảy đặc trưng cho sự đàm đạo các giá trị dòng chảy năm quanh đại lượng trung bình của chúng và được xác định trực tiếp theo chuỗi quan trắc.

Từ công thức (4.5) dễ dàng xác định số năm quan trắc n cần thiết để nhận được chuẩn độ chảy năm với độ chính xác cho trước và với \(C_v\) khác nhau:

\[
n = \frac{C_v^2 10^4}{\sigma_n^2}
\]

Chi trong trường hợp đài chuỗi năm quan trắc lớn hơn 50-60 năm thì chuẩn độ chảy năm được tính với đài toàn chuỗi.

4.3. LƯA CHỌN THỜI KỲ TÍNH TOÁN

Thời kỳ tính toán hiệu quả cần phải xác định trong mọi trường hợp khi mà chuỗi năm quan trắc không vượt quá 50-60 năm. Nó bao gồm các chu kỳ đầy đủ các nhóm năm nhiều nước và các năm ít nước. Chi
nên chú ý vào các chu kỳ dài, các chu kỳ ngắn (2-4 năm) nằm trên các chu kỳ dài không tính đến, bố qua các chu kỳ không kin (có nghĩa là chỉ có hoặc nhóm năm ít nước hoặc nhóm năm nhiều nước).

Khảo sát tính chu kỳ của dao động dòng chảy năm một con sông nào đó và xác định tính tương ứng dao động của một số sông của một khu vực nào đó cần xây dựng độ thị đường quá trình tổng hợp

\[
\sum_{i} (K_i - 1) \frac{C_v}{C_v} = f(t)
\]

Hình 4.1. Đường cong tích lũy hiệu số sông Ca - trạm Đưa

Khí xây dựng các đường quá trình nước với số liệu nguyên thủy rất hay gặp trường hợp xuất hiện các chu kỳ nhỏ trên nền dao động nhiều năm. Để tránh như đó, đạt được hiện tượng dao động đã biến pháp làm trơn các đường quá trình. Một trong những biến pháp thường hay sử dụng nhất là nhóm giá trị dòng chảy năm theo một thời điểm nào đó, lợi độ thời này thường được những dao động đã phảng trên đường quá trình.

Phương pháp làm trơn hay sử dụng nhất trong tính toán thủy văn là đường cong tích lũy hiệu số (hay còn gọi là đường cong tổng đồ lệch khỏi giá trị trung bình) (H.4.1). Đường cong này không chỉ tiền lệ cho việc xác định chu kỳ dao động của nước sông mà còn rất tiện lợi khi so sánh chu kỳ thay đổi nước giữa các con sông tương tự.

Xây dựng đường cong tích lũy hiệu số được tiến hành theo các bước như sau:

Hệ số mở dụng được tính \(K_i = Q_i / Q \text{ trung bình} \) hoặc \(K_i = M_i / M \text{ trung bình} \)

1. Cộng dồn đồ lệch hệ số mở dụng của chuỗi với giá trị trung bình nhiều năm bằng 1 \(\sum_{i} (K_i - 1) \) với \(K_i \) - hệ số mở dụng.

2. Lập quan hệ \(\sum_{i} (K_i - 1) = f(t) \).

3. Do hệ số mở dụng phụ thuộc vào mức độ biến động (hay là hệ số biến đổi) của dòng chảy năm nên khi so sánh dao động dòng chảy nhiều năm của nhiều sông khác nhau người ta khuyên nên sử dụng quan hệ đã điễn anh hướng của \(C_v \):

\[
\sum_{i} (K_i - 1) \frac{C_v}{C_v} = f(t) \quad \text{(4.7)}
\]
Cô thể dùng nhiều đường quan trình lên một đoạn thi và độ thi này gọi là độ thi hơn hợp.

do đường cong dẳng (4.7) cũng như mọi đường cong tích phân khác có những tính chất như sau:

do lệch của giá trị trung bình đại lượng (hệ số m谆 dun) cho một đoạn thời gian m bất kỳ nào với giá trị trung bình của nó cho thời đoạn nhiều năm được đặc trưng bởi tổng góc nghiêng của đường thẳng nối hai điểm đầu và cuối của đoạn với trục hoành và được xác định theo công thức:

\[K_{th} - 1 = \frac{l_d - l_c}{m} \]

(4.8)

với \(l_d, l_c \) - tunden đâu và cuối đường cong trên đoạn m; m - số năm trong đoạn.

Thời đoạn mà góc nghiêng lên phía trên và \((K_{th} - 1)\) đường ứng với các năm nhiều nước, còn thời đoạn mà \((K_{th} - 1)\) âm, ứng với các năm ít nước.

Nếu trong một vùng nào đó thời độ dài năm quan trắc để xác định chuẩn động chây năm với độ chính xác yêu cầu thì tiến hành sử dụng theo chuẩn động có và đánh chập nhân sai số, giá trị này (chưa được gọi là chuẩn) gọi là giá trị trung bình thời đoạn.

Khí gập chuẩn quan trắc nguyên nếu lưu ý rằng nếu chiều chỉ có một hoặc vài chu kỳ đủ thì việc thêm một số năm quan trắc nhiều nước (hoặc ít nước) vào chuẩn nhóm năm có thể (mặc dù chuẩn được kéo dài) tăng sai số xác định chuẩn động chây năm một cách dễ dàng.

Cô thể so sánh các đường cong tích lũy hiệu số của các con sông từ tự nâu để làm tron một vài chỗ phán chia chu kỳ không rõ ràng trên một đường cong nào đó, gây bổ các nguyên nhân cục bộ.

4.4. TỈNH CHUẨN ĐỒNG CHÂY NAM KHI KHÔNG ĐƯỢC SÓ LỊÊN QUAN TRẮC

Trong thực tế tính toán chuẩn động chây năm và đại lượng xác suất dâm bão khác nhau của nó thường gặp các chiều nhóm quan trắc ngắn, độ dài của nó không dâm bão thu được kết quả với độ chính xác đối hồi (5-10%). Trong những trường hợp đó cần đưa chuẩn động chây năm quan trắc ngắn về thời kỳ nhóm năm theo sông tự tự có chiều nhóm năm quan trắc đủ dài, dâm bão độ chính xác đối hồi, và đao động động chây năm tương ứng với đao động của chuẩn phạm tr licz tính toán.

Nếu sông tự t tự có độ dài năm quan trắc dâm bão độ chính xác để ra của chuẩn động chây năm tại trạm tính toán, thì chuẩn động chây năm tính toán được xác định trực tiếp theo chuẩn động chây năm sông tự t tự. Trong những trường hợp khác đối với sông tự t tự, đươc dòng cong lưu lịch thì và theo đọc xác định thời kỳ tính toán.

Chọn các lưu vực gần với sông hoặc trạm tính toán làm trạm tự có cũng một điều kiện động nhất về vị trí địa lý và độ cao, cũng các nhân tố ảnh hưởng khí hậu và mặt đất(ao hồ, địa hình, đặc điểm đất đai và v.v..), cần tính đến cả độ lệch dòng chảy tự nhiên giữa hai lưu vực.

Tiêu chuẩn chấn xác và khác quản nhóm đề lựa chọn sông tự t tự là tỉnh động bô đao động của mỗi doun dòng chây năm và quan hệ quan chấn chê giữa hai trạm cho thời kỳ động năm quan trắc. Quan hệ giữa hai trạm có thể lập bằng phương pháp giải tích hoặc đồ giai.

Quan hệ giữa hai trạm tính toán và sông tự t tự có là chèn nếu như hệ số tương quan r ≥ 0,8.

Mọi điểm lệch vượt quá 15% cần phải được làm sáng tỏ trên cơ sở phân tích thủy văn.

Hệ số tương quan cấp r được xác định theo công thức:

\[r = \frac{\sum (y_i - \bar{y})(x_i - \bar{x})}{\sqrt{\sum (y_i - \bar{y})^2 \sum (x_i - \bar{x})^2}} \]

(4.9)

38
hoặc:

\[r = \sum \left(\frac{K_y - 1)(K_x - 1)}{nC_{xy}C_{xx}} \right) \]

(4.9)

với \(y_i \) và \(x_i \) - các giá trị đồng chay năm tương ứng các chuỗi dạng xét; \(y_0 \) và \(x_0 \) - giá trị trung bình đồng chay năm mới chuẩn; \(K_x \) và \(K_y \) - hệ số mô đun đồng chay năm hai chuẩn; \(C_{xy} \) và \(C_{xx} \) - hệ số biến đổi đồng chay năm tại các trăm trong thời kỳ đồng năm quan trắc \(n \).

Tính toán hệ số tương quan và xác định phương trình đường hồi qui quan hệ của hai biến dân theo một bảng chuyên dụng.

Theo lý thuyết sai số, sai số tổng cộng (\%) đối với chuỗi kéo dài bằng:

\[\sigma = \sqrt{\sigma_1^2 + \sigma_2^2} \]

(4.10)

với \(\sigma_1 \) - sai số dài đường trung bình từ chuỗi năm quan trắc dài tại trạm gốc có độ dài \(n \) năm, xác định theo công thức (4.5); \(\sigma_2 \) - sai số tương quan (quan hệ) đồng chay cho thời kỳ đồng năm quan trắc, bằng:

\[\sigma_2 = C_{xy} \sqrt{1 - r^2} \]

(4.11)

với \(C_{xy} \) - hệ số biến đổi đồng chay năm tại trạm dân cho thời kỳ đồng năm quan trắc; \(r \) - hệ số tương quan đồng chay năm hai trạm; \(n \) - số năm đồng quan trắc.

Khi phân tích các quan hệ nhận được ta rút ra các dạng quan hệ chủ yếu sau:

1. Quan hệ đường thẳng tuyến tính đi qua gốc toạ độ:

\[\bar{M} = a \bar{M}_a \]

(4.12)

với \(\bar{M} \) và \(\bar{M}_a \) tương ứng là chuỗi đồng chay năm sông tính toán và sông tương tự, \(a \) - tủng góc nghiên cứu đường thẳng so với trực sông tương tự.

Loại quan hệ như vậy thường gặp trong trường hợp khi mà dao động đồng chay năm tại cả hai trạm như nhau và hệ số \(C \) gần nhau. Chuẩn đồng chay năm trạm ngắn xác định trực tiếp trên đồ thị quan hệ theo chuẩn đồng chay năm trạm sông tương tự, không cần phải khởi phục chuỗi để tính trung bình vì như vậy chỉ làm tăng khối lượng sai số lên mà thôi.

Cỏi thể giải quyết tốt vấn đề trên bằng phương pháp giải tích, ứng dụng phương pháp hệ số:

\[\bar{M} = \frac{M_{bh}}{M_{ba}} \]

(4.13)

với \(M_{bh} \) - đồng chay năm cho thời kỳ năm quan trắc ngắn theo sông tính toán; \(M_{ba} \) - đồng chay năm cho thời kỳ năm quan trắc ngắn theo sông tương tự.

Công thức (4.13) có thể viết dưới dạng:

\[M = \frac{M_{bh}}{K_a} \]

(4.14)

với \(K_a \) - hệ số mô đun trung bình.

2. Quan hệ đường thẳng nhưng không đi qua gốc toạ độ mà cắt tại \(b \) một trong hai trực toạ độ:

\[\bar{M} = a \bar{M}_a \pm b \]

(4.15)
Quan hệ (4.15) cũng tốt rằng với giá trị dòng chảy nằm nhỏ hơn trong hai sông không có dòng chảy. Quan hệ như vậy cũng tốt dao động tại hai sông không dòng bọ và hệ số biến đổi của hai stream khác nhau. Trường hợp này chuẩn dòng chảy nằm của chuỗi ngăn cũng lấy trực tiếp từ quan hệ theo chuỗi có nằm quan trọng.

Trường hợp hệ số biến đổi hai stream chính lênh nhau lớn khi lấy chuẩn dòng chảy nằm có thể gặp sai số lớn, khi chỉ lượng nước sông của chuỗi nằm quan trọng dòng chảy nằm quan trọng để mô tả đảm bảo chỗ chính xác trong tính toán.

3. Khi có số nằm quan trọng dòng thời từ 10-15 năm hoặc hơn và giá trị hệ số tương quan dòng chảy nằm không nhỏ hơn 0,8 có thể dẫn tải lượng trung bình nằm quan trọng về chuỗi nằm quan trọng dòng chảy

 bằng phương trình hỗ trợ:

\[
M = M_0 + r \frac{\sigma_M}{\sigma_M^a} (M_a - M_0)
\]

với \(M\) - chuẩn dòng chảy nằm (l/s.km²); \(M_0\) - dòng chảy nằm trung bình chuỗi nằm quan trọng (l/s.km²); \(\sigma_M\) - độ lệch chuẩn phương trung bình của mô đun dòng chảy nằm; \(r\) - hệ số tương quan giữa giá trị dòng chảy nằm của các năm quan trọng dòng chảy; \(a\) - chỉ số kỹ hiệu đặc trưng dòng chảy với sông tương tự.

4. Trong một số trường hợp các điểm dựa lên độ thị không chuẩn theo qui luật đường thẳng mà bố trí gian một đường cong náo dot. Nếu có số giả thiết rằng các điểm bố trí không ngẫu nhiên mà phân án tính chất đào dòng của dòng chảy nằm thì quan hệ đó được dùng để tính toán. Có thể dùng quan hệ đó để khởi phục dòng chảy của những năm quan trọng và theo chuỗi mới tính các đặc trưng của dòng chảy.

5. Trong trường hợp riêng thường gặp với sông tương tự giả trị trung bình của cả thời kỳ ngắn và dài giống nhau khi đó việc dẫn về chuẩn không thực hiện được vì với bất kỳ quan hệ nào thì tính toán giá trị trung bình đều không thay đổi.

6. Nếu các hệ số biến đổi \(C_r\) sai khác lớn (vựut quá 20-30%) áp dụng phương pháp so sánh của dòng chảy nằm, khi đó xác suất thiện lòng dòng chảy nằm một số năm cụ thể là đong sâu với các hai stream. Dòng chảy trên sông tương tự cho tất cả các năm phân bố theo thị tự giả đánh xác định theo xác suất thiện lòng dòng chảy tại stream toàn.

7. Khi tải vũng quy hoạch hoan toàn không có tài liệu dòng chảy nào có thể dùng để kéo dài thì có thể kéo dài chuẩn theo tài liệu mua hoặc đối chất của công khi nhưng tất nhiên là để chỉnh xác thấp hơn.

4.5. XÁC ĐỊNH CHUẨN DÒNG CHẤY NAM KHI KHÔNG CÓ TÀI LIỆU QUAN TRẮC

Nhiều khi ta gặp phải trường hợp trên cùng nguyên cursor hoan toàn không có tài liệu quan trọng. Khi đó chuẩn dòng chảy nằm phải xác định theo các phương pháp giải thích.

Có số sử dụng các phương pháp giải thích là việc nghiên cursor và phân tích kỹ lưỡng các nhân tố hình thành dòng chảy khá quan trọng để lấy khởi và dùng các phương pháp ngoại suy, nói suy trên chỉ luật địa điểm của các đặc trưng của hiện tượng thủy văn.

Các phương pháp giải thích thường sử dụng là: 1) Phương pháp bàn đồ; 2) phương pháp nói suy truyền tính; 3) phương pháp tương tự thủy văn và 4) phương pháp hệ số tổng hợp các nhân tố ảnh hưởng tới dòng chảy nằm.

4.5.1. Xác định theo bàn đồ đăng tri

Đây là phương pháp phổ biến nhất đảm bảo nhanh chóng giải quyết bài toán đặt ra. Bàn đồ được xây dựng theo một số tiêu chuẩn đảm bảo độ chính xác cao với chuẩn dòng chảy nằm của từng stream quan trọng 40
phải đặt vào trung tâm hình học của lưu vực mà trạm không chê. Vì vậy chuẩn đồng chảy nằm xác định theo bàn đồ phải tương ứng với trung tâm hình học của lưu vực chưa được nghiên cứu.

Trong trường hợp đơn giản nhất, khi lưu vực chưa nghiên cứu có một vài đường dàng trì thì quan hay lưu vực đó nam giữa hai đường dàng trì thì chuẩn đồng chảy nằm xác định bằng cách nối giải tri đồng chảy nằm giữa hai đường dàng trì đó.

Nếu lưu vực có nhiều đường dàng trì thì qua (H.4.2) thì chuẩn đồng chảy nằm của lưu vực chưa nghiên cứu M₀ được xác định theo công thức:

$$M₀ = \frac{M_1f_1 + M_2f_2 + ... + M_nf_n}{F}\quad(4.17)$$

với $M_1, M_2, ..., M_n$ là giải tri chuẩn đồng chảy nằm trung bình giữa hai đường dàng trì; $f_1, f_2, ..., f_n$ là diện tích giữa hai đường dàng trì, F - diện tích lưu vực tính toàn.

![Hình 4.2. So đồ xác định chuẩn đồng chảy nằm theo bàn đồ](image)

4.5.2. Phương pháp nối suy

Trên bàn đồ đã điền các giải tri một dàn hay lợp dòng chảy trung bình tại trung tâm hình học của lưu vực một vài trạm gốc song song từ trạm trạm tính toán. Chuẩn đồng chảy nằm ở khu vực đồng bằng và vùng địa hình ít thay đổi được xác định trực tiếp bằng phương pháp nối suy trực tiếp. Nếu địa hình đối núi thì nồi suy cần tính tỷ lệ biên đồng chảy nằm theo đó cao.

Sai số chuẩn đồng chảy nằm xác định theo phương pháp nối suy phụ thuộc vào độ chính xác tính toán ở trạm gốc.

4.5.3. Xác định chuẩn đồng chảy nằm theo phương trình cân bằng nước

Tại những vùng ít nghiên cứu mà không thể xay dung được bàn đồ, không thể dùng được hai phương pháp kể trên, có thể sử dụng phương trình cân bằng nước để xác định chuẩn đồng chảy nằm theo công thức:

$$\overline{Y} = \overline{X} - \overline{Z}$$

với \overline{Y}, \overline{X}, \overline{Z} là giải tri trung bình nhiều nam của dòng chảy, mra và bốc hơi, \overline{Z} - hệ số dòng chảy trung bình nhiều năm là tỷ số $\overline{Y} / \overline{X}$.

41
Chuẩn mực nhằm \bar{X} xác định theo tài liệu do mực các thấm phân bố trên lưu vực hoặc ở gần đó, có thể lấy từ các đường đồng tri trên bản đồ.

Đại lượng \bar{Z} có thể xác định theo các phương pháp giải tiếp, các phương pháp tính toán \bar{Z} đã thể hiện rõ trong giáo trình Thủy văn đại qương 1

Giá trị hệ số dòng chảy trung bình nhiều nam có thể xác định xấp xỉ theo các công thức thực nghiệm:

M.A. Velicanov - D.L. Xocolovski

$$\bar{\alpha} = 1 - \sqrt{\frac{d}{4,8}}; \quad (4.18)$$

B. V. Poliacov

$$\bar{\alpha} = \frac{9}{d^3 + 9}; \quad (4.19)$$

S. N. Kriski - M. Ph. Menkel

$$\bar{\alpha} = \frac{11}{d^3 \sqrt{d + 11}} \quad (4.20)$$

Trong các công thức trên d - chuẩn độ thiết huyết am của không khí.

4.6. ÂNH HƯỞNG CÁC ĐIỀU KIEN ĐỊA LÝ TƯỢNG TÔI CHUẨN ĐỒNG CHÁY NAM

Các phương pháp tính toán trực tiếp chuẩn đồng chảy nằm theo tài liệu quan trọng có cơ sở từ phương pháp thống kê cho nên nó không phản ánh được quá trình hình thành dòng chảy và các nhân tố ảnh hưởng đến dòng chảy, mà chỉ xác định đại lượng của nó như là phản ánh một tập hợp.

Các phương pháp tính toán giai tiếp xuất hiện trên cơ sở nghiên cứu khoa học và khả quan hoá tài liệu trên các quy luật đối đối, phù hợp với những tác động của con người tới dòng chảy. Các đặc trưng dòng chảy, gồm cả chuẩn đồng chảy nằm là kết quả tác động tương hỗ của nhiều quá trình vật lý phức tạp diễn ra trên lưu vực. Các đặc trưng dòng chảy và định lượng được xác định bởi hàng loat các yếu tố tác thụ chung ảnh hưởng lên quá trình hình thêm dòng chảy trong mối quan hệ chặt chẽ với nhau. Cho nên việc nghiên cứu các nhân tố địa lý tự nhiên riêng biệt có một ý nghĩa lớn về cả lý thuyết lẫn thực tiễn. Các nghiên cứu này cho phép tính toán chuẩn đồng chảy nằm ở các vùng ít ảnh hưởng hơn và không có số liệu đo đạc và cho phép đánh giá độ tin cậy của các phương pháp tính toán giải tiếp.

Vấn đề đánh giá độ chính xác và định lượng ảnh hưởng của từng nhân tố đến các thành phần dòng chảy bằng phương pháp căn bằng nước là phổ biến hơn cả, bởi nó có thể áp dụng cho mọi lãnh thổ, mọi thời kỳ tính toán.

4.6.1. Ânh hường của các yếu tố khí hậu

Phương trình căn bằng nước đối với lưu vực sông ngòi cho một hệ kiến $\bar{Y} = \bar{X} - \bar{Z}$ thì dòng chảy nằm trung bình là hàm của các yếu tố khí hậu: mưa và bộc hơi hay nói cách khác là hàm của các yếu tố khí tượng thủy văn phản ảnh căn chỉnh nhất của cảnh quan địa lý vùng dảng nghiên cứu.

Kết luận lần đầu tiên đã được Voekov A.I. đưa ra vào đầu thế kỷ thứ XVIII rằng dòng chảy sông ngòi là sản phẩm của khí hậu.

Về mức độ ảnh hưởng của khí hậu theo nghiên cứu của Oldelkop E.M. thì nó là thành phần ảnh hưởng chủ yếu đến sự hình thành dòng chảy sông ngòi, ngoài yếu tố khí hậu thì các thành phần tác động khác chỉ chiếm cỡ ±15-20%.

Những nghiên cứu về sau càng chứng tỏ rằng chỉ có các nhân tố khí hậu mới tác động trực tiếp đến sự hình thành dòng chảy sông ngòi. Các yếu tố khác tác động đến dòng chảy sông ngòi đều không ảnh hưởng trực tiếp mà đều thông qua các yếu tố khí hậu là mưa và bão họ v.v..

Tuy nhiên những kết luận đầu với dòng chảy trung bình nhiều năm không thể áp dụng cho những đặc trưng khác của dòng chảy. Nếu thời kỳ tính toán càng ngắn thì ảnh hưởng của các nhân tố khác lên giá trị trung bình của dòng chảy càng thể hiện rõ nét. Thị dụ như dòng chảy cực đại tại một thời điểm chịu ảnh hưởng trực tiếp của mưa và nền an của đất đai trước khi mưa; hoặc sự phán phối nước trong năm chịu ảnh hưởng của sự phân bố mưa trong năm cũng với độ đặt nước và tịch tự do ao hồ, diện rộng gây nên.

Đối với những lưu vực không khó khăn khi những kết luận trên cũng không được tương ứng với định chất các lưu vực đó nhận nguồn nước duồng chủ yếu là nước trên bề mặt và chỉ bổ sung một phần nước ngầm, khi đó thì các yếu tố như độ sâu tầng nước ngầm có thể đóng vai trò quan trọng bậc nhất trong sự hình thành dòng chảy sông ngòi, đấy tình địa đối vào vai trò thứ yếu.

4.6.2. Ảnh hưởng của diện tích lưu vực đến chuẩn độ dòng chảy

Theo khái thuyết lưu vực sông ngòi được phân chia thành các loại: lớn, trung bình và nhỏ. Trong quan điểm hình thành chế độ nước của các con sông thì sự phân loại như vậy trở nên không xác định.

K.P. Voskrevenski đưa ra phân loại sông ngòi theo các đầu hiệu thủy văn. Theo quan điểm xác định chuẩn độ dòng chảy nằm từ phân loại này thì lưu vực được chia thành các loại lớn, nhỏ và hệ thống gần được đặc trưng bởi chế độ chảy của các tầng nước ngầm.

Chỉ tiêu phân cấp của độ phân cat sông ngòi, độ sâu và độ rộng tầng nước ngầm, tỷ lệ giữa nước mặt và nước ngầm trong một điều kiện nhất định nào đó là diện tích lưu vực. Tuy nhiên mỗi phụ thuộc của các yếu tố kể trên vào diện tích lưu vực trong các vùng địa lý khác nhau rất khác nhau và nó chịu ảnh hưởng của các biến đổi có tính đa di của các yếu tố khí hậu, độ sâu tầng nước ngầm và các yếu tố khác. Ngoài ra thẩm chín trên một vùng có quan điểm lý, dòng chảy trung bình nhiều năm không chỉ phụ thuộc vào diện tích lưu vực mà còn chịu ảnh hưởng của các nhân tố phía dưới và tác động của sự xả yếu dòng sông; cũng xác định sự phân bố dòng chảy từ mưa ra các thành phần nước mặt và nước ngầm chỉ phụ thuộc lượng nước ngầm và khả năng bốc hơi. Những yếu tố đó sẽ làm đường được xét đến, hiện tại phân tích quan hệ giữa chuẩn dòng chảy nằm với diện tích lưu vực.

Ta có thể xây dựng quan hệ $\bar{F} = f(F)$ cho ở H. 4.3.

Trên hình 4.3 la đồ thị biểu diễn quan hệ giữa chuẩn dòng chảy và diện tích lưu vực. Hình 4.3 a) là quan hệ giữa chuẩn dòng chảy nước mặt và diện tích lưu vực cho thấy dòng chảy mặt không phụ thuộc vào diện tích lưu vực. Hình 4.3 b) là quan hệ giữa chuẩn dòng chảy ngầm với diện tích lưu vực, trên đồ thị cho thấy tại khoảng giá trị diện tích từ 0 → F_1 (lưu vực.cat tầng nước ngầm thứ nhất) dòng chảy ngầm bằng 0, từ F_1 → F_2 dòng chảy ngầm tăng tỷ lệ thuận với diện tích lưu vực. Tại giá trị F_2 (diện tích lưu vực đã không chế hết tầng nước ngầm) thì độ diện tích lưu vực tổng dòng chảy ngầm cũng không tăng. Như vậy dòng chảy chỉ phụ thuộc vào diện tích lưu vực trong khoảng F_1 → F_2 trong tầng nước ngầm thứ nhất và khi đạt đến tầng ngầm thứ hai thì hình ảnh trên sẽ được lập lại.
Theo quan điểm trên thì điện tích lưu vực nằm trong khoảng $0 < F < F_1$ và $F > F_2$ là hệ lưu vực kin, còn $F_1 < F < F_2$ là lưu vực hò, có nghĩa là cơ sự gia tăng nguồn nước từ ngoài vào hệ thống.

Tuy nhiên khó xác định chính xác một cách định lượng ảnh hưởng của diện tích lưu vực đối với chuẩn độ chay nầm do có khó khăn khi xác định độ sâu tầng nước ngầm (vì nó phụ thuộc rất lớn vào sự biến đổi lưu lượng nước qua các năm).

4.6.3. Ảnh hưởng của địa hình đến chuẩn dòng chay nầm

Địa hình lưu vực được kết hợp bởi các dạng vò bè mặt trái đất, cao độ lưu vực và mức độ chia cắt, dẫn trôi của nó, độ ổn khung và vị trí các suối, độ đột các dòng chảy và diện trưng... Do vậy khi nghiên cứu ảnh hưởng của địa hình đến từng thành phần riêng của dòng chảy, kẻ chuẩn dòng chảy nầm, cũng không thể tách rời các yếu tố địa hình trên được. Cần phải tính rằng địa hình với các đặc trưng khí hậu có liên quan mật thiết với nhau trong việc tạo nên sản phẩm là dòng chảy sông ngòi.

Thật vậy, với cùng một điều kiện, quá trình thấm ở các lưu vực miền bằng sẽ lớn hơn so với vùng đồi núi. Lưu vực càng độc thì hệ số dòng chảy càng lớn và tồn thời dòng chảy mất càng ít.

Ảnh hưởng trực tiếp của địa hình đến dòng chảy trung bình nhiều năm thấy rất rõ với những lưu vực bè, nơi sông ngòi được nguồn duỗi bơi phân chia yếu là nguồn nước mặt, còn nước ngầm chiếm một tỷ lệ không đáng kể.

Trong các lưu vực lơn và trung bình ảnh hưởng của địa hình quấn sát thấy rõ ở sự bố trí các suối so với hướng truyền ám đọ gió mang đến lưu vực. Ở các suối đón gió lưu vực mua tăng lên do độ tạo ra nguồn nước đói đao dẫn đến kết quả tăng chuẩn dòng chảy nầm. Nguồn lại tại các suối chịu gió do thiếu nguồn ám nên ít mưa và dẫn đến giảm lượng dòng chảy nầm. Qua ví dụ trên cũng chứng tỏ khi xét yếu tố địa hình ảnh hưởng tới dòng chảy, cần phân tích kỹ các yếu tố khí hậu có quan hệ chặt chẽ với chúng trong sự hình thành dòng chảy.

Một thành tố quan trọng của địa hình là độ cao lưu vực cũng ảnh hưởng không nhỏ đến sự hình thành dòng chảy và đặc trưng cơ bản nhất của nó là chuẩn dòng chảy nầm. Ta biết rằng một thế độ không khí giảm dần theo độ cao và độ vậy càng lên cao điều kiện ngưng tụ các khối không khí chứa ẩm càng tăng, vì thế lượng mưa tăng và kéo theo sự tăng dòng chảy. Mặt khác do sự tăng độ cao nhiệt độ không khí hạ thấp nên
4.6.4. Ánh hưởng của địa chất thủy chiều đối chuan động chây nấm

Ánh hưởng của điều kiện địa chất tới chuan động chây nấm thể hiện ở các khía cạnh sau: 1) Thể nham và độ sâu của tầng nước nằm trong lưu vực được quy định bởi các tầng đất đá không thẩm nước; 2) Vị trí của karst trên lưu vực: karst nhơn hay cấp nước.

Ánh hưởng của điều kiện thời thủy chiều đối chuan động chây nấm được hiểu như sau. Theo bản đồ thời thủy chiều thì đất đá phân bố cùng tuân thủ với luật địa đôi. Một trong các yếu tố quan trọng nhất thành tạo đất đôi là khí hậu. Các điều kiện khí hậu ảnh hưởng đến tính chất và cấu trúc phong hóa, sinh hóa, độ ẩm và độ nước trong đất. Ví thế cũng với sự tác động của các yếu tố khác, đất đôi là sản phẩm của địa cảnh quan và có mối quan hệ chặt chẽ không những với khí hậu mà còn với chuyang thủy chiều.

Khi nghiên cứu ảnh hưởng của đất đôi đến chuan động chây nấm, tức là bàn đến các tình chất thấm và chứa nước của đất được xác định bởi các tính chất cơ lý và cơ hoa của đất, cấu trúc của nó và phong pháp xử lý.

Phụ thuộc vào các yếu tố trên, độ ẩm của đất có thể thay đổi trong một phạm vi lớn. Kích thước hạt cát lớn, mặt cát cung hoa và độ thẩm thuáy càng cao. Vì dự cát đường thành tại và cát phá hấp 5 - 10 lấn cương độ thẩm ở sét và sét. Điều này dẫn đến giảm hệ số dòng chây và chuan động chây nấm.

Độ ngâm nước của đất cũng ảnh hưởng đến chây động. Do khả năng của đất có thể giữ được một lượng nước trong tầng hoá động, nước này có thể thấm gia vào quá trình bó hoa hay bơ sung vào nước ngâm. Đất càng có độ ngâm nước cao thì càng làm giảm hệ số dòng chây và chuan động chây nấm.

Cấu trúc của đất cung động vai trò lớn trong chây động đường của đất. Đất có cấu trúc giữ ẩm tốt hơn và ẩm được giữ lại phần nhiều dưới dạng m<D>an không thấm gia vào quá trình tạo động chây dẫn đến giảm chuan động chây nấm.

Vây đối với các tình chất lý hoa khác nhau trên lưu vực, tùy theo mức độ, có ảnh hưởng đến chuan động chây nấm thông qua bộ hoa và tham nhau nước ngâm.

4.6.5. Ánh hưởng của rừng và các dạng thẩm thực vật đến chuan động chây nấm

Văn đề ảnh hưởng của thác thực vật, đặc biệt là rừng đối với chây động sông ngơi là một vấn đề luôn luôn được đặt ra và có một ý nghĩa vô cùng to lớn về mặt lý thuyết cũng như thực tế.

Ngây nay vẫn đề rừng rừng, khai thác rừng cũng đang quan tâm khi văn đề ảnh hưởng của rừng đối với việc tính toán một số thành phán dòng chây, về việc đánh giá lượng nước sông và lưu chỉ sông tương tự v.v... đang có nhiều phức tạp. Sự khô hạn trong việc đánh giá định lượng và định tính các ảnh hưởng do con suy sinh nhiều ma thuần trong nghiêng cát và tổ thành đối tượng của nhiều cuộc tranh cãi. Các kết luận đưa ra văn còn nhiều ma thuần. Một số nhà nghiên cứu chỉ xem xét một vài đặc trưng của dòng chây và tổng thể dòng chây nói chung. Một số khác xét riêng sông'lơn, sông nhỏ và cả các suy đổ có rừng trên các vùng đất, lãnh thổ địa lý khác nhau và các yếu tố khác nữa rồi kết quả kết quả để đi đến kết luận.

Nhưng từ trước hiện nay có một vấn đề đã đặt được sự thông nhất tương đối là các đặc trưng dòng chây (chuan dòng chây nấm, dòng chây cực đại, dòng chây cực tiểu, phân bố dòng chây trong nấm) giữa lưu vực lớn và lưu vực bé cần được phân biệt.
Ảnh hưởng của rừng và các dạng thực vật khác đến chế độ chung của dòng chảy và một số đặc trưng của nó có thể tóm gọn lại như sau:

- Thấm thực vật giữ lại một phần nước mưa và làm tăng tồn tại qua bốc hơi.
- Thấm thực vật hấp thu nước từ đất và thoát hơi qua mặt lá gây tồn tại.
- Thấm thực vật, đặc biệt là rừng che phủ đất, tạo làm giảm độ ẩm và làm giảm sự bốc hơi từ đất.
- Trong rừng chuẩn độ chảy năm tăng lên.
- Thấm thực vật làm tăng độ nham bể mặt Lưu vực, làm giảm vận tốc dòng chảy mặt và làm tăng độ thẩm.
- Thấm thực vật có khả năng thay đổi cấu trúc đất và các tính chất thủy lý của đất.

Ta xét đến một số chức năng của rừng trong vai trò với chuẩn độ chảy năm.

Ảnh hưởng của rừng đến lượng mưa tạo nên dòng chảy sông ngòi thể hiện qua hai hướng: Nhờ rừng nên độ nham bể mặt Lưu vực tăng ngăn dòng vận chuyển khỏi khi theo chiều thượng dung và mưa ở rừng nhiều hơn so với khoảng rộng của một điều kiện thành tạo.

Theo các nghiên cứu thực nghiệm thì có rừng lượng mưa tăng lên khoảng 25-25% so với khoảng trong rừng trong một điều kiện khí hậu, tuy nhiên lượng nước bị thất và lại đầy giữ lại cũng chiếm khoảng 25-25% nên dòng chảy mặt nơi chung không tăng lên, nhưng dòng chảy ngầm tăng và giữ lại trong đất dai và là nguồn nước bổ sung cho lưu vực sông ngoài.

Thành phần tồn tại nước trên lưu vực sông ngoài có rừng lớn hơn khoảng trợ do bốc hơi. Lượng tồn tại này chiếm khoảng 8-10%. Do rừng có hệ số ma sát lớn nên giảm vận tốc dòng chảy, trong thời gian độ nước có thể tăng thời gian thẩm nên cũng dẫn tới việc giảm lượng nước mặt.

![Mức độ che phủ](image)

Hình 4.4. Mối phụ thuộc chuẩn độ chảy năm vào độ che phủ lưu vực

Tuy vậy nếu xét một lưu vực khi thì lượng nước mưa tạo thành sẽ chuyển sang hoặc nước mặt, hoặc nước ngầm nên trừ trưng chuẩn độ chảy năm tại những khu vực có rừng là tăng lên. Lượng dòng chảy phụ thuộc vào độ che phủ và lượng mưa (H.4.4).

Để nghiên cứu ảnh hưởng của rừng đến chuẩn độ chảy năm có thể sử dụng hệ số tương đối:
với \bar{K} - hệ số ảnh hưởng của rừng tổ chức cháy, \bar{N}_i - lớp nước trung bình nhiều năm của lưu vực, \bar{N}_v - lớp nước trung bình nhiều năm của vùng.

4.6.6. Ảnh hưởng của hồ đê chuẩn dòng cháy năm

Ảnh hưởng của hồ biểu thị tương đối rõ đến việc giảm giá tri dòng chảy do tăng diện tích bốc hơi từ bề mặt nước, mà bốc hơi từ mặt nước lón hơn bốc hơi từ bề mặt lưu vực.

Để xác định sự giảm chuẩn dòng cháy năm do hồ tại các vùng kém nghiên cứu từ bán độ dòng chảy cần xét xem nếu trong khu vực tính toán ao hồ chiếm hơn 5% diện tích lưu vực thì có thể xác định theo công thức được rút ra từ phương trình cân bằng nước:

$$M_i = M (1 - f_h) + \frac{(X - E) f_h}{31,5}$$

với M_i - chuẩn dòng chảy của sông có hồ tính toán (l/s.km²); M - chuẩn dòng chảy năm xác định theo bán độ(1/s.km²); X-chuẩn mực năm, mm; E - bốc hơi từ bề mặt nước, f_h - diện tích hồ so với diện tích lưu vực tính bằng %.

Trên lưu vực có hồ thì hồ đê vai trò điều tiết dòng chảy. Vài trò này sẽ được trình bày chi tiết hơn khi bàn đến dòng chảy cục bộ.

4.6.7. Ảnh hưởng của đầm lầy đến chuẩn dòng cháy năm

Ảnh hưởng của đầm lầy được phân biệt bởi sự khác nhau của các điều kiện địa lý tự nhiên, đặc trưng bởi các thành phần di và đê của phương trình cân bằng nước.

Nhiệt độ thấp của bề mặt đầm lầy so với các khu vực đạt đại xung quanh tạo thuận lợi cho nồng độ ẩm ở vùng trũng, và cây cỏ trên đầm lầy cũng phân nào lá lẫn tăng lượng ẩm do mưa so với vùng trũng.

Đầm lầy và đất lầy có độ ẩm cao và độ ẩm bốc hơi cũng tăng. Mất khác vận tốc trên đầm lầy giảm nên sự bốc hơi cũng hạn chế. Do vậy ảnh hưởng của đầm lầy đến chuẩn dòng cháy năm có thể là đường hoành rộng của điều kiện cụ thể. Nó không chỉ phụ thuộc vào các điều kiện khí hậu mà cả các điều kiện vi khí hậu trong mối tương quan giữa các thành phần cần căn nhắc: mưa, ngưng tụ, bốc hơi.

Nói chung vùng thừa ẩm thì không quan sát thấy ảnh hưởng của đầm lầy tổ chức dòng chảy năm, còn tại các vùng thiếu ẩm thì đầm lầy làm giảm chút ít chuẩn dòng cháy năm.

4.6.8. Ảnh hưởng của hoạt động kinh tế đến chuẩn dòng cháy năm

Theo mức độ sử dụng các biện pháp thủy lợi ta có thể chuyển các hoạt động kinh tế của con người thành 3 nhóm chính:

1) Hoạt động trên lòng sông nhằm điều hóa hay phân phối lại nguồn nước bằng cách xây dựng hồ chứa, xây đập hoặc chuyển dòng.

2) Thay đổi trong quan giữa các thành phần cần nước như tuồng tiêu, khử mặn...

3) Hợp đồng do việc điều tiết dòng chảy vi nhiều mục đích khác nhau.

Hồ chứa đảm bảo điều tiết sự phân phối không đồng đều của dòng chảy để phục vụ kinh tế dân sinh.

Việc tự nhiên thường làm tăng hoặc giảm dòng chảy ngầm, việc chuyển dòng làm tăng lượng nước ở lưu vực này kéo theo sự giảm lượng nước tại lưu vực khác.
Trong việc khai thác sử dụng nước cũng có nhiều mặt thuận, như thủy điện cần sự điều hòa nguồn nước để khai thác đều đặn trong năm, còn người ngoài thì cần đảm bảo chế độ nước tự nhiên để duy trì sự cân bằng sinh thái.

Việc khai thác hoang trên bể mất lưu vực làm tăng do thám của đất đai đến việc tăng độ chay ngầm và giảm độ chay mặt.

Vậy những hoạt động cụ thể của con người trên bể mất lưu vực có hai hướng:
1) Tăng độ chay nằm như trồng rừng đầu nguồn, chuyển nước sống từ nơi khác về qua hệ thống thủy lợi.
2) Giảm độ chay mặt và tăng độ chay ngầm như việc xây dựng hồ chứa, khai thác hoang, khai thác rừng và điều tiết cho nông nghiệp, cải tạo đăng lầy v.v..

Nhu yếu ảnh hưởng của các hoạt động kinh tế của con người tác động tới độ chay nằm rất lớn và không đơn giản nên khi khai thác tài nguyên nước trên lưu vực cần có tính toán cụ thể để đảm bảo việc phục hồi và tái tạo nò theo hướng phát triển bền vững.

4.7. XÂY DỰNG BẢN ĐỒ CHUẨN ĐỒNG CHAY NĂM

Bản đồ chuẩn đồng chay nằm là một sản phẩm có tính khoa học và thực tiễn cao. Để thành lập bản đồ chuẩn đồng chay nằm cần phải sử dụng nhiều phương pháp phân tích và tính toán thủy văn để đưa ra một bản đồ tốt nhất ở sở tài liệu.

4.7.1. Phân tích tài liệu xây dựng bản đồ chuẩn đồng chay nằm

Bản đồ chuẩn đồng chay nằm thường được xây dựng cho một vùng lãnh thổ rộng lớn với sự khai quật cao về tài liệu. Trước hết phải phân tích và đánh giá tài liệu đồng chay xem từng khu vực tính toàn thuộc diện đã sử dụng tài liệu chuan hóa hay phải kéo dài (khi đó phải tìm kiếm tương tự) hoặc giả là vùng chưa được nghiên cứu để chọn phương pháp xác định chuẩn đồng chay nằm tương ứng.

Trên ban đồ nên cần chú ý các chỉ tiết có thể dẫn tới sai lệch tính toàn chuẩn đồng chay nằm như độ cao lưu vực, độ chế phù do rừng, mưa độ ao hồ, đảm đầy v.v.. và dùng địa hình địa phương để có sự điều chỉnh cần thiết. Và quan trọng nhất cần tham khảo bản đồ m Rams để làm sáng tỏ những điểm không hợp lý giữa bản đồ chuẩn đồng chay nằm và bản đồ chuẩn mực. Những lý giải các điểm không tương đồng đều phải dựa trên cơ sở phân tích khoa học các tài liệu về diệu kiện địa lý tự nhiên của lãnh thổ.

Nếu gặp những trường hợp phải do thủy văn hóa mà trải khi từng dựa thi nhất thiết khi về các đường đường trì cần tham khảo bản đồ m Rams.

Trong một số trường hợp cần chú ý phân tích sự biến đổi địa hình trong lãnh thổ để dẫn các đường đường trì hợp lý sao cho đường đường trì không cắt ngang đường phân lưu.

Khi không đủ điều kiện để xác định chuẩn thì bản đồ được vẽ theo sở liệu đồng chay trung bình nhiều năm, cần ghi rõ thời điểm tôn tạo để người sử dụng biết và khai thác.

4.7.2. Các bước xây dựng bản đồ chuẩn đồng chay nằm

Xây dựng bản đồ chuẩn đồng chay nằm nhất thiết phải thực hiện đúng các quy trình sau:
1. Phân tích đánh giá tài liệu đồng chay để lựa chọn thời kỳ tính toàn chuẩn đồng chay nằm.
2. Kiểm tra tính chất nhận của các chuỗi số liệu. Đế xây dựng bản đồ chuẩn đồng chay nằm người ta hay sử dụng nhận là các chỉ tiêu Wincooson hoặc chỉ tiêu Student.
3. Kiểm tra tính phù hợp và tinh đắc biểu của chuỗi để xác định chu kỳ tính toán chuẩn đông chảy nằm có hội tụ đủ điều kiến tính chuẩn hay không?

4. Tính chuẩn đông chảy nằm theo tài liệu hiện có bằng các phương pháp tính đã nêu ở trên đối với từng trường hợp cụ thể. Dùng các tài liệu về độ cao, địa hình, tham thức vật và ao hồ... để hiệu chỉnh. Chuẩn đông chảy nằm qui về giá trị \bar{M} hoặc \bar{Y} để loại trừ ảnh hưởng của diện tích lưu vực.

5. Theo kết quả tính chuẩn đông chảy nằm cho từng trầm độ đều được chúng vào trung tâm hình học của lưu vực trầm không để lên bản đồ dạng trực.

6. Dương dạng trực chuẩn đông chảy nằm trên bản đồ được vẽ theo phương pháp nói (ngoài) suy dựa trên lập luận về tính địa điểm của dòng chảy. Khi vẽ các đường hành trí dòng chảy cần tham khảo bản đồ chuẩn nằm và đồ địa hình.

7. Viết giới thiệu các phương pháp tính toán khi xây dựng bản đồ làm phụ liệu thuyết minh đi kèm. Trang trí trên bản đồ chuẩn đông chảy nằm và tỷ lệ bản đồ phải tuân theo đúng qui phạm của Cục Đồ đạc và Bản đồ Nhà nước.

4.8. ĐỒNG CHẢY SÔNG NGỜI VIỆT NAM VÀ CÁC YÊU TỐ ĐI ĐỊA LÝ TÁC ĐỘNG TÔI NO

Việc truy thuy và khai thác các dòng sông, ngoài những hiểu biết về mang lưới địa lý thủy văn và những đặc trưng hình thái của nó, còn phải có những hiểu biết đầy đủ về những yếu tố địa lý ảnh hưởng đến dòng chảy, quá trình hình thành và di chuyển dòng chảy trên lưu vực sông. Trên cơ sở đó, chúng ta mới hiểu biết một cách chi tiết bản chất vật lý của những đặc trưng thủy văn, mối quan hệ được sự hình thành và diễn biến của dòng chảy một cách định lượng, chính xác thông qua việc lựa chọn phương pháp, xây dựng các công thức tính toán đặc trưng của dòng chảy cũng như cân bằng của sông ngòi.

Theo M. I. Lôvôits, ngày nay người ta bắt buộc phải đến vào trừ của hoàn cảnh địa lý trong những hiện tượng về thủy văn diễn biến. Hoàn cảnh đó chính là môi trường địa lý, là những yếu tố trực tiếp hoặc gián tiếp hình thành dòng chảy sông ngòi.

Chúng ta biết rằng, môi quan hệ trong hồ giữa dòng chảy và môi trường địa lý rất phức tạp, khó có thể phân biết một cách chính xác vai trò ảnh hưởng của mỗi yếu tố địa lý với dòng chảy. Chính vì vậy khi nghiên cứu vấn đề này trên lãnh thổ nước ta, chúng ta cần hiểu hết về tài liệu (nhiệt độ, tài liệu thực nghiệm về dòng chảy mới cho kết quả nghiên cứu trước đây), cần được tiếp tục kiến nghiêm trong thực tế.

4.8.1. Các yếu tố khí hậu

Trong các nhanh tốt địa lý tự nhiên thì khí hậu là nhân tố cơ bản, đóng vai trò quan trọng nhất trong quá trình hình thành và diễn biến dòng chảy sông ngòi.

Trong điều kiện khí hậu nhiệt đới của nước ta, mưa là hình thức nước roi duy nhất. Do độ số lượng và tính chất của nước mưa cùng sự bổ sung từ lưu vực đã quyết định tiềm năng của dòng chảy sông ngòi. Mưa và bổ sung là các yếu tố khí hậu tham gia trực tiếp vào cân chỉnh nước của mỗi lưu vực sông cụ thể.

1. Mưa. Đặc điểm khí hậu nhiệt đới ấm, gió mùa của nước ta thế hiện rất rõ rệt lượng mưa trung bình trong nhiều năm và tương quan giữa lượng mưa và lượng bổ sung là cần thiết. Thời vây, xét trên toàn lãnh thổ...
nước ta, thì lượng mực trung bình nhiều năm khoảng 1960mm. So với lượng mực trung bình cùng với độ (10°-20° Bắc) thì ở nước ta có lượng mực khá đổi đàm, gấp 2,4 lần. Chi ở những nơi khuất giờ âm thì lượng mực trung bình năm môi giảm xuống dưới 1000 mm.

Quy luật phân bố của lượng mực trung bình nhiều năm không đều trong không gian, phụ thuộc vào độ cao địa hình và hưởng của nguồn dẫn giới âm. Các trung tâm mực lớn được hình thành trên lãnh thổ như: Mồng Cái 2800 mm - 3000 mm, Bắc Quang 4765 mm, Hoàng Liên Sơn 2600 mm - 3000 mm, Mường Tè 2600 - 2800 mm, Hoàng Sơn 3500 mm - 4000 mm, Thừa Lưới 2600 - 3662 mm, Trà Mi - Ba To 2600 - 3400 mm, Sông Hính 2500 mm, Bảo Lộc 2876 mm. Hai trung tâm mực lớn nhất nước ta là Bắc Quang và Ba Na đạt 5013 mm. Vùng có lượng mực lớn kéo dài từ vị tuyến 15°B đến 16°B, gọi là vị tuyến nước.

Ngược lại, những trung tâm mực nhỏ được hình thành ở những vùng thấp, quanh, hoặc nằm song song với hướng gió âm, đó là các vùng: An Châu 1000 mm - 1200 mm, Sơn La 1000 mm - 1300 mm, Mường Xén 800 mm - 1000 mm, đặc biệt ở Phan Rang, Phan Rí chỉ đạt 650 mm. Vùng có lượng mực nhỏ kéo dài ở Duyên Hải cục Nam Trung Bộ từ vị tuyến 10°B đến vị tuyến 12°B là vùng ít mực khả di chuyển ở nước ta.

Nhin chung, lượng dòng chảy của sông ngòi ở nước ta cũng khá phong phú. Độ sâu dòng chảy nhiều năm đạt 998 mm. So với độ sâu dòng chảy ở vị độ 10° - 12°B cũng với độ với nước ta (207 mm) thì lượng mực dòng chảy ở nước ta gấp 5 lần.

Quy luật phân bố của dòng chảy cũng tương tự như phân bố của mực. Trên toàn lãnh thổ, các trung tâm dòng chảy lớn, nhỏ thường trùng với các trung tâm mực lớn, mực nhỏ.

Nhưng vùng mực lớn thì dòng chảy lớn như ở vùng Vải Lai thuộc tâm mực lớn Mồng Cái, độ sâu dòng chảy năm trung bình đạt tối 2334 mm; vùng Hoàng Liên Sơn, độ sâu dòng chảy năm cũng đạt tối 2180 mm tại Tả Thạnh, vùng Bắc Quang trên 3000 mm, Mường Tè trên 2000 mm, vùng Hoàng Sơn tại sông Rào Cái, Rào Tro, độ sâu dòng chảy tối 1800 mm - 2400 mm. Vùng mực lớn Bắc đo Hải Vân, độ sâu dòng chảy cũng xấp 2000 mm, tại sông Hữu Trạch là 1973 mm; vùng mực lớn Trà Mi - Ba To, Ba Na, độ sâu dòng chảy đều vượt trên 2000 mm; sông Búng 2070 mm, sông Tranh 2303 mm và sông Vệ 2372 mm. Quá vào phía Nam có sông Hính cũng đạt trên 1500 mm. Ở trung tâm mực của sông Đông Nai dòng chảy cùng đạt tối 1100 - 1428 mm.

Sử lập lại phân bố của mực cũng được thể hiện khá rõ đối với các trung tâm dòng chảy nhỏ như tại Chí Lăng 470 mm, Thạc Vai 391 mm, Cửa Rào 583 mm, sông Lữ 316 mm.

Nhu vậy, lượng dòng chảy và sự phân bố của nó trên lãnh thổ nước ta phụ thuộc chủ yếu vào sự phân bố của lượng mực. Đặc điểm có tính quy luật đó được phân phân rát rõ trên thực tế và trên bản đồ đường dốc mực và dòng chảy trung bình nhiều năm.

Yếu tố mực không những ảnh hưởng đến dòng chảy mà phân bố trong không gian như đã đề cập trên đây, mà còn ảnh hưởng đến tính biến động của dòng chảy theo thời gian.

Thật vậy, chế độ mực ảnh hưởng lớn đến chế độ dòng chảy sông ngòi ở nước ta. Khi hậu mực ta có sự phân hoá theo mùa rõ rệt, trên toàn lãnh thổ, ở đâu cũng có một mùa khô với lượng mực thấp hơn lượng bổ sung và một mùa mưa. Do đó dòng chảy sông ngòi cũng tăng lên theo mùa, mưa lũ ứng với mùa mưa và mùa cạn ứng với mùa khô (ít mực).

Chế độ mực sông điều hòa hay giải quyết cung cấp nước quan trọng đối với sản xuất và đời sống. Trong điều kiện khí hậu nhiệt đới gió mùa như ở nước ta vẫn để chế độ dòng chảy trong năm lại là vấn đề quan trọng hơn nhiều so với tổng lượng.

Nhin chung, trên toàn lãnh thổ mực mưa và chế độ dòng chảy cũng phân hoá theo phương vị không gian khá rõ:
Mùa mưa nhiều có xu thế PhạmREDIT:
Bắc Bộ mưa mùa từ tháng IV, V đến tháng IX, X.
Bắc Trung Bộ, mưa mùa từ tháng VIII đến tháng XII.
Nam Trung Bộ từ tháng IX đến tháng XII.
Phan Rí và Nam Bộ mưa mùa từ tháng IV, V đến tháng X - XI.
Trung và Nam Tây Nguyên mưa mùa từ tháng V đến tháng X.
Tóm lại, từ vùng duyên hải Trung Bộ có mưa mưa bất thường nhất do địa hình của đầy Trương Sơn phổ biến với hoàn lưu động đặc tạo nên; còn phần lớn lãnh thổ có mưa mưa bất thường từ tháng IV, V và kết thúc vào tháng X - XI.
Mưa mưa tùy địa điểm khác nhau, dao động từ 4 đến 6 tháng, nhưng có tới 70 -90% lượng mưa cao tập trung vào mùa mưa.
Xét trên toàn lãnh thổ, sự chế độ của chế độ mưa đối với chế độ dòng chảy là rõ ràng, nhưng dòng chảy sông ngòi còn chịu ảnh hưởng của cấu trúc mặt đê mực lưu vực. Tự trước vào khi năng diều tiết của lưu vực nhiều hay ít mà chế độ dòng chảy sông ngòi phụ thuộc vào chế độ mưa với mức độ khác nhau.
Nhin chung, mưa lưu lượng ngắn hạn ở mùa mưa 1 - 2 tháng và xuất hiện chậm hơn mưa mùa khoảng 1 tháng. Nhưng trong nhiều trường hợp, các nhân tố của mặt đê có ảnh hưởng tới đối với chế độ dòng chảy. Đò là trường hợp các lưu vực sông lưu và nhỏ, lòng sông không thu được toàn bộ nước ngầm. Ở những vùng mà với nhiều hoặc đạt bazan có tảng phong hóa sâu, khả năng thẩm lỏn thì chế độ dòng chảy thể hiện sự ảnh hưởng của mặt đê rất rõ ràng. Như ở Tây Nguyên, do khả năng thẩm của đất vào mùa khô rất lớn, trong khi đó mùa mưa đầu mưa lại cách đoạn, nhưng đó nhỏ, đề tạo ra một mùa lưu chậm hơn mưa mùa tới 1,5-2 tháng. Ảnh hưởng của nhân tố khí hậu giảm lượng ảnh hưởng của mặt đê tăng lên, trời thành nhân tố trì trọng sự hình thành chế độ dòng chảy của sông ngòi.
Ô nước ta có nền nhiệt độ cao, trên toàn lãnh thổ nhiệt độ trung bình nằm dưới 270C ở miền Bắc, và 250C ở miền Nam. Nhiệt độ cao đã làm cho quá trình bốc hơi trên lưu vực sông từ Bắc vào Nam đều khá lớn. Lượng bốc hơi trung bình năm toàn lãnh thổ là 953mm, so với lượng mưa trung bình năm thì hồ sơ bốc hơi là 0,48, nhờ phần khoảng 35% so với cùng vịnh đó.
Tóm lại mưa và bốc hơi là hai yếu tố quan trọng nhất của khí hậu ảnh hưởng đến dòng chảy, nó quyết định tiềm năng dòng chảy sông ngòi ở nước ta. Nhân tố khí hậu có ảnh hưởng quyết định đến sự phân bố của dòng chảy trong không gian và phân bố theo thời gian.
Qui luật về sự ảnh hưởng của khí hậu đến dòng chảy ở nước ta đã được khẳng định khả rõ thông qua quan hệ giữa mưa và dòng chảy. So với các nhân tố khác thì quan hệ giữa mưa và dòng chảy chặt chẽ hơn cả đối với sự hình thành dòng chảy sông ngòi ở nước ta thì mưa đóng vai trò quyết định cả về lượng và chế độ dòng chảy trong năm cũng như phân bố trong không gian. Sự ảnh hưởng của phân bố khí hậu tới dòng chảy được định liệu qua thực tế tài liệu do đặc và tính toán thường chiếm khoảng 80-90%. Các nhân tố ảnh hưởng khác thuộcaret đến của lưu vực ảnh hưởng đến dòng chảy khoảng từ 10-20%.
Từ kết quả nghiên cứu qui luật ảnh hưởng của khí hậu đối với dòng chảy đã cho phép thiết lập quan hệ giữa lượng mưa và lượng dòng chảy cho các khu vực trên toàn lãnh thổ. Nhìn chung hệ số tương quan đều rất cao, phân loy đều đạt trên 0,85. Trong từng khu vực đều có hệ số tương quan cao; cần cù vào phương trình tương quan được xác định cho phép suy từ lượng mưa ra lượng dòng chảy với sai số cho phép. Điều
nay đặc biệt quan trọng và có ý nghĩa thực tiễn đối với việc tính toán lượng dòng chảy cho những lưu vực không có tài liệu hoặc tài liệu dòng chảy chưa đủ đầy.

4.8.2. Thời ngừng và nham thạch

Chúng ta biết rằng, lưu vực sông được cấu tạo từ thời ngừng và nham thạch. Thời ngừng và nham thạch là nhân tố ảnh hưởng quan trọng đến dòng chảy. Thực tế cho thấy một lưu vực có lượng mưa lớn chưa đủ sản sinh một dòng chảy mặt phẳng phủ, vi dòng chảy còn phụ thuộc vào khả năng thẩm nước của thời ngừng và kiến trúc địa chất của lưu vực sông này.

Theo kết quả phân tích và so sánh trên một số cặp trận thủy văn thí nghiệm của thời ngừng và nham thạch đối với dòng chảy sông ngòi theo hai chiều hướng: có thể làm tăng hoặc làm giảm lượng dòng chảy, điều hòa hoặc thất thường hoá chế độ dòng chảy. Trên toàn bộ lãnh thổ nước ta có hai loại thời ngừng và nham thạch có ảnh hưởng rõ và quan trọng nhất đối với dòng chảy sông ngòi và chế độ của nó là đá vôi và đất phong hóa từ bazan.

Đa với việc xác định một tiến độ lắng và phân bố rộng khắp ở miền Bắc nước ta. Nó có đặc điểm là để hòa tan, nhất là trong nước mua có nhiều CO2 từ do, thường có các hang động sống ngắn....làm giảm dòng chảy mặt; mặt đố sồng ngôi ở những vùng đã với thương nhỏ hơn 0,5km/km2, lượng dòng chảy sông ngòi thường bị giảm do mặt nước vi đường phân lưu của lưu vực sông ở đây không lớn. Quí luật giảm dòng chảy trong các lưu vực sông có nhiều đá với đã thể hiện khả rõ. Kết quả so sánh ở một số cặp trận thủy văn có tỷ lệ đa với khác nhau rõ rệt, các yếu tố tiện tích, độ cao và mực gian tương tự cho thấy tỷ lệ đa với trong lưu vực tăng lên khoảng 10% lưu động chảy mà bị giảm bình quân là 8%. Đặc điểm này thường xuất hiện trong các vùng karst dạng cơn ở giai đoạn trẻ, thành từng khối vững chắc, diện hình nước mứa rộng, hình thái karst chủ yếu là các phần nước rút, mưa biến, mưa hiện. Đồng chảy khí khí khí hiện cõ thể gặp ở Trà Lĩnh, Đồng Văn, cao nguyên Sơn La và khởi nồi đã với Kê Băng... Ngược lại, các vùng karst đã phát triển đến giai đoạn cuối, hình thành các nũ sốt, mưa biến do bị lấp với phong hóa lập đầy thi đồng chảy mặt đã nhiều hơn rõ rệt như ở Quang Yên, Trùng Khánh...

Rô ràng đã với đa tạo ra ở nước ta một kiểu chế độ dòng chảy sông ngòi đặc biệt, thủy văn karst với những đặc điểm như sau:

Đồng chảy mặt giảm đi rõ rệt, mặt đố sồng suối thưa thớt, dưới 0,5km/km2. Lượng nước ngâm phong phú, thương chi từ 30-40% lưu lượng dòng chảy cặn nam, có ảnh hưởng rõ rệt đến phân bố dòng chảy trong nam, có tác dụng điều hòa dòng chảy do khả năng di chuyển rất lớn của lưu vực. Các lưu vực sông vũng đa với có hệ số hình dạng ngôn ngữ thương bê (0,50-1,0), mô dun dòng chảy dinh lũ cũng tiên hiện rõ rệt, nói chung lũ lên chậm và đỉnh lũ kéo dài.

Đa bazan và đất do bazan chiếm tới 25% diện tích của miền Nam. Riêng Tây Nguyên vô phong hóa trên đất do bazan chiếm tới 20000 km2. Đất do bazan rất dày, có chỗ tới 300m, khả năng thẩm nước lớn, hệ số thẩm nước đạt 0,25 có ảnh hưởng đến dòng chảy và chế độ của nó. Cụ thể là lượng tầng đá bồi lấp do khả năng thẩm nước của đất lớn trong điều kiện mưa nhỏ kéo dài tới 8 tháng ở Tây Nguyên. Đồng chảy mất ở đầy bị giảm sút rõ rệt, biểu hiện ở mặt đố sông suối có dòng chảy thường xuyên thay dưới 0,5km/km2, hệ số dòng chảy nấm thấp 0,40 - 0,45. Lượng nước ngâm khả năng chiếm 30 - 35% lưu lượng dòng chảy cặn nam. Khả năng thẩm nước lớn của đất do bazan làm giảm sút lượng dòng chảy và đặc biệt có ảnh hưởng rõ rệt đến chế độ dòng chảy. Biểu hiện rõ nhất là do ảnh hưởng của đất dai ở Tây Nguyên đã làm cho mùa mưa xuất hiện chậm hơn mùa mưa một thời gian dài nhất nước ta tới 1,5 đến 2 tháng. Điều đó chỉ rõ sự ảnh hưởng của đất do trên lưu vực đã trực tiếp làm thay đổi lưu lượng dòng chảy và chế độ của nó một cách
đáng kể, ảnh hưởng của nhân tố khí hậu trong trường hợp trên dấy không rõ nét như ở nơi khác, tính cực bồ, địa phương cần được chú ý đầu trong mọi tình toán lực bảo về thủy văn sông ngòi.

4.8.3. Địa hình

Sau khí hậu, thứ nhì quan trọng và làm thay đổi nhiều nhất ảnh hưởng trực tiếp tới lượng dòng chảy và sự phân bố trong không gian của chế độ của dòng chảy, ở nước ta nhân tố địa hình cũng có ảnh hưởng khá rõ nét đến lượng dòng chảy và chế độ của nó.

Lãnh thổ nước ta có diện tích đối núi chiếm tới 3/4 trong độ chênh lệch, nhưng đỉnh cao nhất mối đắt tiêu chuẩn núi trung bình. Độ cao 100 - 500 m chiếm 50% diện tích, núi cao trên 1000 m chỉ chiếm tới 10% diện tích. Như vậy, đối với khả năng chịu được của địa hình nước ta.

Ảnh hưởng của địa hình có tác động nhất định tới dòng chảy thông qua việc tăng cường tính địa đối của khí hậu. Nên cùng, cần toán lãnh thổ nước ta sự giao tiếp đa chiều, đối với địa hình thường biểu hiện ở sự tăng của lượng mưa, độ độc và cơ khí, nhất độ giảm, mật độ sông suối tăng. Trong điều kiện độ lượng dòng chảy cũng được gia tăng theo độ cao khá rõ.

Kết quả tính toán cho thấy lượng mưa và lượng dòng chảy gia tăng theo độ cao. Sự tăng lớn nhất xuất hiện trong khoảng độ cao từ 300-600m và giới hạn độ cao mà quy luật mưa tăng theo độ cao không tồn tại như thường được xác định từ độ cao 2000m trở lên.

Nur vậy, đối với cao tuần lục vực sông ở nước ta đều nằm trong giới hạn tác động của quy luật tăng theo độ cao của lượng mưa và dòng chảy. Sự gia tăng của lượng mưa và dòng chảy được tính như sau: đối với lượng mưa tăng khoảng từ 20-30mm cho 100m tăng độ cao; đối với dòng chảy thì tăng khoảng chi 5-40mm cho 100m tăng độ cao. Kết quả so sánh một số cấp thуй vận có độ chính khác rõ rệt, thì thủy lượng mưa và lượng dòng chảy đều tăng theo độ cao. Tính cho 100m tăng lên của độ cao thì sự tăng lượng dòng chảy giữa các trầm không đồng nhất, nó tăng nhiều đến 23%, nó tăng ít khoảng 10%. Trong trung bình thì lượng dòng chảy tăng theo độ cao khoảng 16% cho 100m. Trên toàn bộ lãnh thổ, những trung tâm mực lớn và dòng chảy lớn đều nằm trên các vùng núi có độ cao nhưng lượng mưa và gió gió không đồng nhất. Những vùng đó là: vùng núi Bình Liêu, núi Tây Côn Lò, Hoàng Liên Sơn, núi Púlăng, vùng núi nghèo An, Hà Tĩnh, vùng Đỏ Cà, Hải Vân, Bán Na, Trà Mi, Ba To... đều có độ cao dòng chảy trung bình nhiều nằm đáy tối 1500 mm đến 2000 mm, mố dùn dòng chảy trung bình nhiều nằm tối 70 đến trên 100/śkm². Tuy vậy cũng phải kể đến tính thể trái với quy luật trên. Đó là sự xuất hiện của một vũng mưa lớn, dòng chảy lớn, nhưng độ cao lớn như ở Bạc Quang, duyên hải Quang Ninh, Thủ Lũy... Điều đó có liên quan tới (hiệu ứng) chấn trước núi, ở độ không khí bị nhiều dòng mảnh, mực mưa, dòng chảy cũng gia tăng rõ rệt so với những vùng suốn mưa xung quanh.

Ngoài quy luật tăng theo độ cao của lượng mưa và lượng dòng chảy nằm, chúng ta còn thấy sự ảnh hưởng của địa hình khá rõ rệt đối với lượng và sự phân bố dòng chảy do đặc điểm hình học của địa hình. Theo quy luật này thì ở suôn dòng giọt có lượng mưa và lượng dòng chảy lớn hơn ở phía quá giới. Sự chuyển lệch này khá rõ ràng, nhất ở phía nam dòng bắc và tây nam núi Đông Trwiąi; như hai trăm Bình Liêu và Cẩm Đàm lượng dòng chảy chưa lệch nhau tới 35%. Như vậy, đối cao và lượng suôn dòng gió âm của địa hình đều làm tăng lượng dòng chảy nằm, trung bình thì lượng mưa tăng do khoảng 22%.

Đối với chế độ dòng chảy, nhân tố địa mạo cũng ảnh hưởng rõ rệt. Nội chung những vùng địa hình cao, mực mưa nhiều thì tỷ số phân phối dòng chảy trong nằm điều hòa hơn vụ thủy thấp có lưu lượng ít, nguyên nhân chủ yếu là do mưa mưa kéo dài. Sự hình thành của địa hình đối với cơ chế dòng chảy thế hiện rõ nhất ở phía dòng chảy núi Trường Sơn. Tại đây hình đã phổ biến với hướng của gió mưa, hình thành kiểu chế độ dòng chảy đặc sắc nhất ở nước ta- mưa lũ lạch về mùa đông, từ tháng IX-X đến tháng XI- XII; mô hình
phân phối dòng chảy trong năm có pha nước lớn, nước nhỏ rộ rệt, khác biệt hẳn so với các vùng khác trên lãnh thổ.

4.8.4. Rừng

Trên thực tế nước ta cho thấy ảnh hưởng của rừng đối với dòng chảy lẽ thuộc vào rất nhiều yếu tố, trong đó thể chế tự nhiên và loài rừng là những yếu tố quan trọng nhất.

Theo Winlamb và Nikhirsin thì rừng cây làm biến đổi thơ lượng rã mảnh nên một khi tình hình chế phủ của rừng thay đổi thường kéo theo sự thay đổi về loại rừng và chế độ dòng chảy của sông ngòi.

Ở nước ta quá trình biến đổi thơ lượng biến đổi qua rừng nguyên thủy đến rừng mức lại, rừng tre nữa có tranh, bị rạm và cùng cũng là đối trọng. Chiến lược biến đổi rừng giữa tuy có song rã rứt và rã rứt.

Sự biến đổi trong vùng của dòng chảy là khó kết về mùa can, chế độ sông ngòi từ điều hòa trở nên thất thường, ảnh hưởng lớn, lũ lụt, khô cạn thường xuyên xảy ra nhiều hơn khi có rừng.

Ở nước ta, rừng còn lại không nhiều, tỷ lệ chế phủ của rừng hiện nay chỉ còn khoảng 24% diện tích toàn lãnh thổ, tức là đã suy tàn quá mức cho phép tối 26%. So với năm 1945 thì năm 1985 nước ta chỉ còn 7,8 triệu ha rừng. Như vậy, sau 40 năm đã mất 65 triệu ha rừng. Riêng từ năm 1975 đến nay hàng năm mất 225000 ha rừng.

Hiện nay còn nhiều rừng (tỷ lệ đạt có rừng chiếm từ 35% trở lên) ở Bác Bố chỉ có hai tỉnh Hà Giang, Tuyên Quang, các tỉnh thuộc Bác Trung Bộ, Ninh Thuận, Bình Thuận và Tây Nguyên. Trong đó có hai tỉnh Lào Cập và Đắc Lắc, tỷ lệ rừng còn nhiều nhất đạt từ 45 - 68% diện tích. Vùng có ít rừng nhất là Tây Bình chỉ có 9%, đất có rừng ở hai tỉnh Bác Ninh, Bạc Giang chỉ còn 12%...

Về loại rừng thì trong từng diện tích rừng là 7,8 triệu ha có các loại như sau:

- Lá rộng thường xanh chiếm 5,362 triệu ha, rừng rụng là 371,6 nghìn ha, là kim 135 nghìn ha, rừng hồn giao gối, tre nưa 395 nghìn ha, rừng tre nưa 1 triệu ha.

Trong khi đó diện tích không còn rừng là 13 triệu 787 nghìn ha, trong đó đối trọc chiếm gần 1 triệu ha, còn lại là cây bụi, gỗ rải rác.

Tỷ lệ rừng còn lại và loại rừng của nước ta như trên đã có ảnh hưởng quan trọng đến dòng chảy sông ngòi cũng như chế độ của nó. Theo số liệu nghiên cứu thực nghiệm dòng chảy và chống xói mòn, kết quả số sánh một số cấp trầm thủy vẫn có sự khác nhau rõ rệt về tỷ lệ rừng, bước đầu chúng ta có thể nhận lên một số nhận xét sau:

Rừng làm tăng hay giảm lượng dòng chảy năm. Thực tế cho thấy rằng, vùng có độ cao địa hình dưới 500m thì sự tăng hay giảm lượng dòng chảy năm không rõ rệt. Song, xu thế chung là lượng dòng chảy ở đây thường bị giảm đi. Nguồn lại, những vùng địa hình cao hơn 500 m thì xu thế chung làm tăng lượng dòng chảy năm, càng lên cao xu thế càng rõ rệt. Điều đó phù hợp với quy luật: tồn tại giảm và mua tăng theo độ cao.

Trong điều kiện mưa nhiều, dòng chảy phon bị phá, ở nước ta ảnh hưởng của rừng có ý nghĩa hơn cả là tác dụng điều hòa chế độ dòng chảy và chống xói mòn đất. Vì khả năng điều tiết dòng chảy lưu, kết quả tính toán cho thấy rừng làm giảm lượng dòng chảy không lớn như một số tác giả đã nói. Trong điều kiện mưa lũ cường độ lớn, kẻ dài ngày xuất hiện bất kỳ thời điểm nào trong mùa lũ đã hạn chế khả năng điều tiết dòng chảy lưu của rừng. Thực vậy khi đặc rừng đã bảo hòa nước thì rừng ít còn tác dụng điều tiết làm giảm dòng chảy lưu, nhưng cũng phải thấy giới hạn của nó, cụ thể đối với từng con lưu trong mùa lũ. Không nên nghĩ rằng rừng có tác dụng điều tiết phân lớn dòng chảy lưu như người ta vẫn thường nhận mạn.

54
Riêng về dòng chảy mặt trên suối thì rừng có tác dụng làm giảm đi rất nhiều. Tài liệu thực nghiệm dòng chảy đã chứng minh điều đó, tức là lượng dòng chảy sạt mặt của suối đc phá rừng chiếm một tỷ lệ đáng kể trong quá trình hành thành dòng chảy lụa.

Anh hưởng của rừng đối với dòng chảy kết quả kết quả nghiên cứu thực nghiệm ở nước ngoài và ở nước ta đều khẳng định là rừng làm tăng lượng dòng chảy kết một lượng đáng kể. Ở những vùng rừng còn nhiều thì dòng chảy kết có thể tăng từ 30 - 100%. Trị số mở rộng dòng chảy nhờ chất lượng nguồn nằm của rừng còn nhiều rừng lớn rõ kết rừng không còn rừng.

Tác dụng anh hưởng của rừng ở nước ta thể hiện rất rõ, điều đó rất có ý nghĩa đối với sản xuất và đời sống. Có thể khai thác quý xuất này một cách triệt để và tích cực để biến đất rừng thành một bộ chuỗi nguồn ngàn. Chuyển nguồn mất thừa tài thành nguồn ngàn để dùng trong mùa kết thống qua sự điều tiết của rừng là một phương thức cần được khai thác.

Chúng ta cần thấy rằng, khả năng điều tiết tự nhiên lớn nhất khi tỷ lệ che phủ của rừng trên lưu vực lớn hơn 50% diện tích. Thực tế ở nước ta cho thấy những lưu vực có trị số mở rộng dòng chảy mưa kết đạt từ 20 đến 40l/skm² đều thấy hiện ở những lưu vực có tỷ lệ che phủ của rừng đạt lớn hơn 50% diện tích, có thể kết một số ví dụ như ở Nghĩa Đô, Ngọc Thia, Sông Hội, Ngân Phố, Thu Bồn, sông Vệ, Bắc và Nam Tây Nguyên. Ngược lại những vùng đối núi tro téc thì mặt luôn ca nguồn nước thường xuyên, dòng chảy chỉ tồn tại khi có mưa, mưa cần, lòng sông suối can tro się đi.

Rừng cây, một "bàn tay" không lời gi%B1x. Đơi với dòng chảy rạn, rừng có tác dụng làm giảm rõ nhất xỏi mơn mặt đất. Trong điều kiện địa lý tự nhiên tương tự, lưu vực nào còn nhiều rừng thì xảm tự nhiên di rõ rết. Thực tế đã chỉ rõ nếu đất không còn rừng cây che phủ thì lượng đất mơn mặt đất sẽ tăng gấp 120 lần so với đất còn rừng, lượng đất bị bào mòn hàng năm 0,14 - 1,03 tấn/ha ở nơi rừng tự nhiên còn rừng đối tốt và tăng lên tối 124 tấn/ha nếu ở đồ khai thác hết rừng thành đối tro téc.

Trên đây đã chỉ rõ vai trò bảo vệ và cải tạo điều kiện thủy văn của rừng, trong tình hình của nước ta rừng đang ở tình trạng bị tận phá nghiêm hôm thì càng phải để cao việc bảo vệ và khôi phục thêm rừng.

"Rừng là một bộ phận của môi trường sống, là tài sản quý báu của nước ta, có giá trị lơn đối với nền kinh tế quốc dân và văn hóa công cộng".

4.8.5. Sự hoạt động kinh tế của con người

Chúng ta biết rằng mỗi lưu vực rừng là một hệ sinh thái, là một tổng thể tự nhiên khả hoàn chỉnh, đó là một tập hợp có quy luật của nhiều thành phần và nhiều bộ phận các điều kiện tự nhiên xã hội. Ngoài những phân tích tự nhiên trên đây có anh hưởng tích cực hoặc tiêu cực đối với dòng chảy, trong thời đại hiện nay sự phát triển cụ kỳ nhanh chóng của sản xuất, đã xuất hiện một khả năng tác động của con người có anh hưởng sâu sắc và nhanh chóng đến dòng chảy sông ngòi. Trên lãnh thổ nước ta hiện nay cả hai chiều hướng trên đây đều thể hiện rất rõ nét.

Nghững ảnh hưởng tích cực của hoạt động kinh tế đối với dòng chảy sông ngòi nước ta ngày càng trở thành mặt chủ yếu. Đó là sự ghi nhận thủy lợi hoa, thủy và khai thác tổng hợp các dòng sông lớn nhỏ. Có thể nói trên khắp nước ta ngày nay đang diễn ra một cuộc chiến đấu vì đại với thiên nhiên. Bằng các công trình thủy lợi, thủy điện, con người đang phân bố và phân phối lại nguồn nước cho phù hợp với yêu cầu dùng nước của sản xuất và sinh hoạt. Nhiều công trình thủy lợi, thủy điện sẽ giúp con người chỉnh phục các dòng sông, hạn chế, xóa bỏ bất lợi do chế độ dòng chảy của nó gây nên, tránh thô khai thác triệt để nguồn thủy lợi vốn rất giàu có của sông ngòi nước ta. Chúng ta có thể nên lên một số công trình làm lại được:

Công trình trên sông Đạ tại Hòa Bình có hỗ chứa tới 9,5 tỷ m³ nước, điện năng sản xuất là 8,16 tỷ kw/g. Công trình Trị An trên sông Đồng Nai có hỗ chứa được 2,64 tỷ m³ nước, công suất phát điện là
400000 kw. Công trình thủy điện Dầu Tiếng thực hiện phân bố nguồn nước trong không gian và thời gian, nhằm phục vụ cho sản xuất và đời sống... Đò là những tác động rất tích cực đối với dòng chảy sông ngòi. Trong suốt 40 năm qua sự nghiệp thủy lợi hoà bình chức phục các dòng sông ở nước ta đã có nhiều thành tích. Nếu trước kia, thời thuộc Pháp cả nước mới chỉ có một hồ chứa Xuân Dưỡng với dung tích 7,7 triệu m³, và ba trận bom điện, đảm bảo hệ thống thủy nông thì ngày nay cả nước ta đã có tới 3500 hồ chứa nước nhỏ, 650 hồ chứa nước lớn và vừa, hơn 2000 trận bom điện. Các công trình thủy lợi ở khắp lãnh thổ có khả năng tự cho 2,2 triệu ha, tiêu cho 85 vạn ha và ngăn mặn cho 70 ha đất nông nghiệp. Sự mạnh di nhiên là tập trung lại các nguồn dẫn ta thực sự đã làm thây đổi đời chảy theo hướng có lợi cho sản xuất và đời sống. Bạn sự phân phối và phân bố tự nhiên công trình thủy lợi, chúng ta đã có thể hạn chế lượng dòng chảy lớn nhất, tăng cường lượng dòng chảy nhỏ nhất - cụ thể là phân phối lượng dòng chảy trong năm, đó là việc làm tích cực nhất đối với cải tạo sông ngòi.

Một tác động tích cực khác đến dòng chảy sông ngòi cũng kra rồng khả là phòng trảr rồng cây gây rừng, thực hiện cảnh tác theo khoa học nông lâm kết hợp để bảo vệ đất, bảo vệ nguồn...

Phân phối các loại cây để tạo nên một cấu trúc rừng rất kin khi thật bị xói mòn ít và giữ nước nhiều nhất. Thực hiện một cấu trúc rừng đồng thời phù hợp đặc thù, muồng giữ nước, có thể duy trì được sản xuất với năng suất ổn định trên cơ sở giữ được nước và đất. Điều đó có ảnh hưởng rất tích cực đến dòng chảy của sông ngòi. Những ảnh hưởng tiêu cực nghiêm trọng đến dòng chảy sông ngòi nước ta là nạn phá rừng, nhiễm bẩn nguồn nước...

Việc thực hiện các sông suối của nước ta đã đó ra biển Đồng một lượng đất không lỏ, khoảng 300 triệu tấn. Vùng nội ruột không có cây che phủ bị bỏ mòn trung bình 1 - 2 cm, mất đi khoảng 100 - 200 tấn đất /ha. Tình hình đó làm cho đất trồng, đời nội trốc lan rộng, đất mới khai thác cũng bị cày cấy, bỏ lấp đầy hồ chứa, sông, lòng lạch. Hồ Thắc Bà có tới 2,7 triệu tấn chất lắng động, hồ Đà Nhím cũng bị can nhiều, không đủ nước để phát triển mực nước, hồ Cấm Sơn đã can khoảng 2 m trong 10 năm, một số hồ chứa có vai tổng trữ m³ chỉ sau vài năm đã can đến mức không có khả năng tươi nữa. Tình hình đó đã và sẽ gây nên những thiệt hại lớn cho sản xuất và đời sống.

Tình hình thấm rừng bị thiếu hụt nguồn cung cấp trong những năm gần đây có thể là những nguyên nhân dẫn đến lũ lụt, hạn hán có chiều hướng xảy ra nhiều hơn và nghiêm trọng hơn. Nhiều sông suối ở các miền trung nước ta có hiện tượng nước trung bình thấp hơn so với trước kia và mức nước ngầm ở nhiều nơi cũng bị hạ thấp. Nhiều bến lồng ở Tây Bắc đã phải đối di nội khác vì các sông suối đã can sau khi rũng đầu nguồn bị phá hủy. Ông Quảng Bình 2 vạn ha rùng đầu nguồn bị bom đạn Mỹ phá hủy, năm từ năm 1970 lưu lượng chảy ra trên sông Gianh và Nhịt Lề tăng lên 2,7 lần, chủ độ thủy văn ở hai vùng kế trên chỉ anh hưởng và xâu di một cách rõ rệt. Hiện tại và trong tương lai, phi, độ xây dựng và sản xuất phát triển chưa từng có, những tác động tiêu cực của con người tới dòng chảy cũng diễn ra hàng ngày và sâu sắc, chúng ta phải có ngày biến pháp kể cả pháp luật và vấn đề giáo dục để bảo vệ nguồn nước làm cho những dòng sông của chúng ta mai mối giữ được lưu lượng và chất nước tự nhiên của chúng.

Trên đây là một số nhận tò chủ yếu ảnh hưởng tới dòng chảy sông ngòi trên lãnh thổ nước ta. Việc tách bạch từng nhân tố chỉ là xem xét những ảnh hưởng của chúng theo hướng nào mà thôi. Các nhân tố của môi trường địa lý có thể tác động riêng rẽ như trên, nhưng dòng thời chúng cũng phối hợp thành một tổng thể tự nhiên hoặc một hệ địa sinh thái để tác động dòng chảy sông ngòi.

Chúng ta biết rằng, dòng chảy sông ngòi trên một vùng cụ thể là hệ quả tất yếu của sự tác động tổng hợp của cả hệ địa sinh thái trong đó có dòng chảy sông ngòi, ở các kiểu cảnh quan khác nhau thì lượng dòng chảy sông ngòi có thể chênh nhau tới 60 - 70 %. Điều đó đã chỉ rõ sự ảnh hưởng tổng hợp của môi
trường tôi dòng chảy sông ngòi là rất rõ rệt. Mỗi tác động vào môi trường đều phải quan tâm đầy đủ đến các thành phần của cảnh quan để đảm bảo cho nguồn nước được bình thường và trong sạch vì rõ ràng thể tổng hợp địa lý thay đổi sẽ kéo theo sự thay đổi tương ứng về thủy văn. Chính điều đó một lần nữa khẳng định một điều là mọi tính toán, phân tích về thủy văn sông ngòi một lần nữa, một vung nào đó hoàn toàn không thể chấp nhận sự xâm xét đến các yếu tố cảnh quan - các yếu tố ảnh hưởng đến dòng chảy một cách phản diện hoặc so sánh.
Trong qui hoạch lãnh thổ và thiết kế công trình thủy không chỉ cần biết được chuẩn đồng chảy năm, mà còn cần biết cả sự biến đổi của đại lượng do theo cả thời gian lẫn không gian.

Chuẩn đồng chảy năm là một đặc trưng đồng chảy mang tính chất xử lý thống kê của chuỗi thời gian, nên việc xét các dao động của nó liên quan mật thiết đến các kiến thức thống kê trong thủy văn. Các khái niệm về xác suất và tần suất đàn bão cũng có ý nghĩa thực tế khi áp dụng vào thủy văn học.

Đồ đạm bão của một đại lượng thủy văn là xác suất giá trị dạng xet của nó có tính thời. Xác suất là trước do đánh giá độ tin cậy việc xuất hiện giá trị này hay giá trị khác của đặc trưng hay hiện tượng dạng xet. Xác suất là tỷ số giữa số các trường hợp thuận lợi m với tổng các trường hợp n:

\[p = \frac{m}{n} \]

Người ta phán biệt giữa xác suất lý thuyết lim \(p = \frac{m}{n} \) và xác suất thực nghiệm \(p = \frac{m}{n} \). Trong thực tế tính toán thủy văn mà cụ thể là tính toán các đặc trưng của đồng chảy (đồng chảy, mức nước) thường sử dụng các tần suất thực nghiệm được tính toán theo các công thức phổ biến nhất là:

Công thức S. N. Kriski và M. Ph. Menkel:

\[p = \frac{m}{n + 1} \times 100\% \]

Công thức Shegodaev:

\[p = \frac{m - 0,3}{n + 0,4} \times 100\% \]

với n số thành phần chuỗi; m - số tự tử số lượng chuỗi đồng chảy xấp thụ tự giảm dần.

Công thức (5.2) cho giá trị thiên lơn về đoạn đầu của đường cong đảm bảo và nó được sử dụng khi tính toán đồng chảy cực đại; người lai có công thức (5.3) cho giá trị thiên nhỏ về phần cuối đường cong đảm bảo và nó được dùng để tính các giá trị đồng chảy trung bình, đồng chảy cực tiểu.

Đối khi người ta còn dùng công thức Hazen A., rất phổ biến trong tính toán thủy văn thực hành ở Mỹ:

\[p = \frac{m - 0,5}{n} \times 100\% \]

Đạo đồng xác suất đồng chảy năm và giá trị độ đảm bảo cho trước của nó có thể được xác định nhờ các đường cong đảm bảo thực nghiệm được theo các số liệu quan trắc. Các đường cong này hoặc được đảm độ thiết hoặc công thức giải tích đều cho phép người (người suy) với việc sử dụng các phương trình đường cong phân bố đại lượng nguồn niêm tương ứng với dạng đường cong thực nghiệm.

Sai số khi thực hiện nói (người suy) các đường cong này để xác định các giá trị đồng chảy với tần suất đảm bảo tương ứng thường không lớn lắm nếu trong trường hợp khoảng ngoại suy không vượt ra ngoài khoảng quan trắc nhiêu lắm.

Việc ngoại suy và làm tron bằng phương pháp giải tích (ma thực thể thường hay sử dụng) được áp dụng với chuỗi quan trắc ngắn và đại khi có nhu cầu sử dụng phương pháp tương tự thủy văn trên các sông chưa được nghiên cứu.
Cơ sở của các phương pháp là cơ chế dòng chảy năm là một chuỗi của các dải lượng ngẫu nhiên và như thế có thể sử dụng lý thuyết xác suất thống kê để mô phỏng các quá trình dòng chảy. Để xây dựng các đường phân bố lý thuyết cần có ba tham số thống kê cơ bản:

1. Đại lượng trung bình của dòng chảy (chuẩn dòng chảy năm) \bar{Q}.
2. Hệ số biến đổi C_v.
3. Hệ số bát đối xứng C_s.

5.1. ỨNG DỤNG LÝ THUYẾT XÁC SUẤT THÔNG KÊ TÍNH DAO ĐỒNG ĐỒNG CHAY NĂM

Mọi đặc trưng dòng chảy: trung bình năm, cực đại, cực tiểu, phân bố trong năm và sự thay đổi của nó theo thời gian và không gian được xác định bởi nhiều yếu tố khác nhau và phụ thuộc vào. Bởi vậy sự hình thành dòng chảy sông ngòi là một hiện tượng thiên nhiên chịu tác động của nhiều yếu tố.

Ngày nay đã có nhiều phương pháp tính toán dòng chảy được xây dựng dựa trên việc phân tích đặc trưng của các yếu tố khí tượng và môi trường. Điều này đặt ra nhiều xử lý các do dựa trên các thực nghiệm dòng chảy và khí tượng. Và để này ta sẽ tiếp tục bàn về hiện tượng cựulu các mô hình dòng chảy.

Cơ sở lý thuyết của việc áp dụng lý thuyết xác suất vào hiện tượng dòng chảy là lý thuyết xác suất giới hạn trung tâm. Lý thuyết này được sử dụng để nghiên cứu các tác động tích phân nhiều yếu tố trong các hiện tượng và các mối quan hệ trong một tổng thể khác với các phương pháp trước đây là nghiên cứu từng hiện tượng độc lập.

5.1.1. Một số tính chất cơ bản của các đường phân bố đặc trưng dòng chảy

![Hình 5.1. Sơ đồ xây dựng đường cong phân bố và đường cong đảm bảo]

Trong thực tế nghiên cứu và tính toán các đặc trưng và hiện tượng ngẫu nhiên khác nhau của nhiều quá trình và hiện tượng thiên nhiên đa dạng thì chỉ trong đó có nhiều yếu tố có cơ sở vật lý, người ta sử dụng các đường cong phân bố khác nhau.

Lựa chọn đường cong lý thuyết hay mô hình toán học nào để mô tả hiện tượng và quá trình dòng chảy chỉ có thể khi nó đáp ứng được các đối hoặc cần thiết và mong muốn của thực tế. Sự tương ứng...
của đường biểu diễn lý thuyết và các đường cong thực nghiệm chỉ đạt được bằng cách so sánh chúng và xây dựng một đồ thị hợp lý.

Trên hình 5.1 mô tả phương pháp xây dựng đường cong đảm bảo từ đường cong phân phối các số liệu quan trắc lượng mực.

Đường cong cho một khái niệm trực quan về sự phân bố các đại lượng nghiệm cụ.

Vi dụ diện tích của đường parabol từ x_i đến x_{i+1} (H.5.2), bằng $\int_{x_i}^{x_{i+1}} \phi(x)dx$ là xác suất của giá trị đại lượng x_i nằm trong khoảng x_i đến x_{i+1}.

Hình 5.2. Đường cong phân bố đối xứng

Đường cong đảm bảo cho thấy độ đảm bảo nào (%)(hoặc xác suất nào) của giá trị này hay giá trị khác của đặc trưng nghiệm cụ trong số các trường hợp xuất hiện nhưng không chi ra được bao giờ thì xảy ra.

Để tiến liệu trong tính toán các đặc trưng động chạy, các phương trình đường cong phân bố có thể bố qua khả năng đảo động của đại lượng biến x_i trong khoảng $\infty > x_i \geq 0$ hoặc $x_{\text{max}} > x_i \geq x_{\text{min}}$.

Phương trình đường cong phân bố lý thuyết cần có số tham số tối thiểu mối thuận lợi sử dụng trong thực hiện tính toán thủy văn.

Điều quan trọng nhất là đường cong phải có tính đơn giản trong việc xác định các tham số và chỉ tắc xây dựng, nhưng đồng thời lại cho khả năng so sánh giữa chuỗi số liệu để từ đó có thể khảo sát sự biến động của đường chạy theo khoảng.

5.1.2. Đường cong đảm bảo và các khái niệm thống kê

Đề bút nhất của đường cong phân bố nhất thực bắt đối xứng được áp dụng rộng rãi trong tính toán thủy văn.

Trung tâm phân bố là điểm trọng yếu với trung bình số học của chuỗi, là một trong những tham số chính của chuỗi thống kê. Tung độ đi qua trung tâm phân bố gọi là tung độ trung tâm.

Trung vị là giá trị của biến nằm giữa đây đã được sắp xếp. Nếu số thành viên chuỗi là chẵn thì trung vị là trung bình cộng của hai số hàng nied giữa chuỗi. Đường đi qua trung vị chia diện tích đường cong phân bố ra hai phần bằng nhau. Mod là đỉnh của đường cong phân bố, là cực trị nếu đường cong phân bố có một đỉnh.

Khoảng cách từ gốc toa độ đến trung tâm phân bố X bằng:

$$X = x_{\text{min}} + a + d = 1,0$$ \hspace{1cm} (5.5)

hoặc là hệ số mô đun K:

60
\[K = K_{\text{min}} + a + d = 1.0 \] (5.6)

với \(x_{\text{min}}, K_{\text{min}} \) - cực tiểu tuyệt đối của đại lượng biên dạng kết; \(a \) - khoảng cách từ đầu đường cong phân bố tối mod; \(d \) - khoảng cách từ mod tối trung tâm phân bố đặc trưng cho mức độ bất đối xứng của đường cong phân bố và gọi là bán kính bất đối xứng; \(d \) càng lớn thì tính bất đối xứng của đường cong càng tăng.

Hình 5.3. Đường cong phân bố bất đối xứng

1- trung tâm phân bố; 2- trung vị; 3- mod; 4- \(K_{\text{min}} \) hoặc \(x_{\text{min}} \)

Khi bất đối xứng đường thị trung vị và mod nằm bên trái trung tâm phân bố, nếu bất đối xứng âm thì tính bất đối xứng càng tăng.

5.2. XÁC ĐỊNH CÁC THAM SỐ ĐẶC TRUNG CHỦ QUÔC ĐÀY ĐỦ SỐ LIỆU QUAN TRẮC

Tham số thứ nhất và chung yếu nhất của chuỗi là giá trị trung bình được tính theo công thức:

\[Q_0 = \frac{1}{n} \sum_{i=1}^{n} Q_i. \] (5.7)

Để tính so sánh giá trị trung bình giữa vùng này với vùng khác, có thể thay \(Q_0 \) bằng \(Y \) hoặc \(M \).

Độ lệch chuẩn phương hay còn gọi là độ lệch chuẩn kỹ hiệu là \(\sigma \).

\[\sigma_x = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{X})^2}{N}} \quad \text{hoặc} \quad \sigma_x = \sqrt{\frac{\int (x - \bar{X})^2 \, dx}{N}}. \] (5.8)

Độ lệch chuẩn phương có cùng thử nguyên với đặc trưng phân bố.

Hệ số biến đổi: Để tiến lội việc so sánh độ biến động của từng chuỗi, độ lệch chuẩn phương được biểu diễn qua đơn vị tương đối \(\sigma_x / \bar{X} \) và được gọi là hệ số biến đổi \(C_v \).

\[C_v = \frac{\sigma_x}{\bar{X}} = \frac{1}{N} \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{X})^2}{\bar{X}^2}}. \] (5.9)

Nếu (5.9) biểu diễn qua hệ số mô đun thì:
Công thức (5.9) và (5.10) đúng với giá thiết là giá trị \bar{X}_N với $N \to \infty$. Song dỗ dài của chuỗi trên thực tế thường rất hạn chế và bằng n nên trong các công thức tính toán người ta thường thay N bằng $n < N$.

Hiệu số giữa $\bar{X}_{N \to \infty}$ và \bar{X}_n càng lớn thì độ dài của chuỗi càng ngắn.

Trong thống kê toán học đã chứng minh được rằng:

$$\sigma_{N \to \infty} = \sqrt{\frac{n}{n-1}}. \quad (5.11)$$

Để giảm sai số xác định σ và C_v do chênh lệch độ dài chuỗi theo (5.11) với $n < 30$ năm ta thế vào chổ n là $(n-1)$. Trong trường hợp đó:

$$\sigma_X = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{X})^2}{n-1}}. \quad (5.12)$$

$$C_v = \sqrt{\frac{\sum_{i=1}^{n} (K_i - 1)^2}{n-1}} \quad (5.13)$$

với x_i - giá trị đóng chây từng năm, K_i - hệ số mô dồn đóng chây từng năm ($K_i = Q_i/Q_0$); n - số năm quan trắc.

Vậy hệ số biến đổi là thực do đánh giá dao động đóng chây năm xung quanh chuẩn dòng chây năm và bằng độ lệch chuẩn phương trung đối $C_v = \sigma/\bar{X}$.

Hệ số bất đối xứng C_s đặc trưng cho tính bất đối xứng của chuỗi đại lượng nghiên cứu xung quanh giá trị trung bình hoặc là trung tâm phân bố. Cũng như C_v, giá trị C_s biểu diễn bằng đơn vị tương đối và cho phép so sánh tính bất đối xứng của chuỗi này so với chuỗi khác và có thể khái quát được.

Đối với đặc trưng bất đối xứng của chuỗi người ta nhận giá trị trung bình lập phương độ lệch các số hạng so với giá trị trung bình, và đề nhận được giá trị vô hiệu nguyên người ta chia cho lập phương độ lệch quan phương:

$$C_s = \frac{\sum_{i=1}^{n} (x_i - \bar{X})^3}{n \sigma^3}. \quad (5.14)$$

Do $\sigma = C_v \bar{X}$ nên:

$$C_s = \frac{\sum_{i=1}^{n} (K_i - 1)^3}{n C_v^3} \quad (5.15)$$

Các công thức tính \bar{Q}, \bar{X}, C_v, C_s là tính theo số liệu trực tiếp quan trắc nên không thay rõ quan hệ của nó với các tham số của đường cong phân bố lý thuyết. Tuy nhiên chúng có quan hệ qua момen. Phương pháp момen là cơ sở làm trơn đường cong phân bố thực nghiệm với đường cong thực nghiệm thay được bằng đường cong lý thuyết có момen điều tích bằng момen điều tích đường cong thực nghiệm.

Momen gốc bậc k
Độ ilmington X là giá trị trung bình \bar{X} bậc k.

Momen trung tâm bậc k:
$$M_{dk} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{X})^k$$ (5.17)

là giá trị trung bình độ lệch các x_i riêng biệt xung quanh đại lượng trung bình \bar{X} bậc k.

Các tham số chính của đường cong phân bố được gán với momen gốc hoặc momen trung tâm bởi các đẳng thức sau:

1) Giá trị trung bình số học bằng mô men gốc bậc nhất $\bar{X} = M_0$. Khi \bar{X}, $\bar{X} = 1$ thì M_n bằng 1,0.

2) Độ lệch chuẩn phương bằng căn bậc hai của momen trung tâm bậc hai $\sigma = \sqrt{M_2}$. hoặc $C_v = \frac{\sigma}{\bar{X}}$.

3) Hệ số biến đổi bằng căn bậc hai của mô men trung tâm bậc hai chia cho giá trị mô men gốc bậc nhất

4) Hệ số bát đối xứng bằng mô men trung tâm bậc ba chia cho độ lệch chuẩn phương tự bắc ba.

Vậy mô men trung tâm bậc 0 là đại lượng trung bình, mô men trung tâm bậc hai là độ lệch chuẩn phương, mô men trung tâm bậc ba là mức độ bát đối xứng.

Chọn đường cong phân bố như thế có một số điểm là giới hạn dưới nhiều khi không thỏa mãn với douz giá trị âm - không tương ứng với thực tế dòng chảy là đại lượng không âm nên trong thực tế nhiều khi còn sử dụng đường cong phân bố S.N. Kriski và M. Ph. Menkel trên mối tương quan của $C_v = 2C_e$ từ đường cong phân bố như thế và thay biến $z = aX^b$ để với mối quan hệ C_v và C_e thì có thể thỏa mãn với mỗi $C_e < 2C_v$ đại lượng dòng chảy không âm (H.5.4).

Trong thực tế tính toán thủy văn còn áp dụng rộng rãi đường cong logarit chuẩn xuất phát từ phân bố chuẩn không pha với biến X mà là lgX, khi mà đạo động của biến X trong khoảng $0 < X < \infty$ thì đạo động của lgX nằm trong giới hạn rộng hơn $-\infty < lgX < \infty$, đáp ứng được phân bố chuẩn Gaus.

Các đại lượng dòng chảy trong phân bố logarit chuẩn được biểu diễn bằng hàm thống kê λ_2 và λ_3:

$$\lambda_2 = \frac{\sum_{i=1}^{n} lg K_i}{n-1}$$ (5.18)

$$\lambda_3 = \frac{\sum_{i=1}^{n} K_i lg K_i}{n-1}$$ (5.19)

5.3. XÁC ĐỊNH CÁC THAM SỐ ĐẶC TRUNG THEO PHƯƠNG PHÁP ĐỜ GIẢI - GIẢI TÍCH G. A. ALECXÂYEV

Một trong những phương pháp xác định tham số đặc trưng khối của chuỗi dòng chảy do G. A. Alexxayev đề xuất là ứng dụng đường congrnh thức với mỗi giá trị C_v. Theo phương pháp này cả ba tham
số \bar{Q}, C_v và C_s đều được xác định qua các dạng độ đặc

Hình 5.4. Đường cong phân bố (a) và đam bao (b) S.N. Kriski và M. Ph. Menkel với $C_v = 0,6; 1- C_s = C_v; 2- C_s = 2C_v; 3- C_s = 3C_v$
trung của đường cong thực nghiệm. Các tung độ đặc trưng do là các tưng độ ứng với tần suất đảm bảo 5%, 50%, 95%. Suất đảm bảo được tính theo công thức (5.3) \[p = \frac{m - 0.3}{n + 0.4} \times 100\% \] với chuẩn quan trả đỡ công chay năm được sắp xếp theo thứ tự giảm dần.

Từ mục đích đối trên lưu bần logarit dựa các điểm quan trả lưu lượng \(Q_b, M_i \) hay \(K_i \) ứng theo tần suất của dây giảm dần theo các điểm trên lưu bần đường cong đảm bảo thực nghiệm. Từ đường cong do theo các điểm đặc trưng lấy các giá trị \(Q_{5\%}, Q_{50\%}, Q_{95\%} \). Sau đó theo công thức tính hệ số đối xứng của đường cong đảm bảo \(S \) là một hàm của \(C_v \).

\[S = \frac{Q_{5\%} + Q_{95\%} - 2Q_{50\%}}{Q_{5\%} - Q_{95\%}}. \] (5.20)

Từ hệ số \(S \) theo bảng chuyển dụng, dưng theo hàm \(C_v = f(S) \) tính \(C_v \). Sau đó tính giá trị độ lệch quan phương theo công thức:

\[\sigma_{Q_0} = C_v Q_0 = \frac{Q_{5\%} - Q_{95\%}}{\Phi_{5\%} - \Phi_{95\%}}. \] (5.21)

\[Q_0 = Q_{50\%} - \sigma_{Q_0} \Phi_{50\%} \] (5.22)

với \(\Phi_{95\%}, \Phi_{50\%}, \Phi_{5\%} \) là độ lệch chuẩn của tưng độ đường cong đảm bảo khi thực với \(C_v = 1 \) được tra từ bảng Phoster.

Hệ số biến đổi:

\[C_v = \frac{\sigma_{Q_0}}{Q_0}. \] (5.23)

Phương pháp đo giải giải tích được hoàn thiện dễ dàng hơn so với phương pháp mô men và đây là ưu điểm chính của phương pháp. Tuy nhiên độ chính xác của phương pháp phụ thuộc rất nhiều vào cơ sở để đánh đường cong đảm bảo từ số liệu thực nghiệm, vở độ biến động của các điểm và phân bố của các điểm ở đoạn đầu và cuối đường cong cũng như kinh nghiệm của người vẽ.

Hơn nữa, tham số đầu tiên được tính toàn là hệ số bất đối xứng \(C_v \) là tham số kém ổn định nhất trong các tham số đặc trưng nên có thể dẫn đến sai số ở phần cao và phần thấp của đường cong đảm bảo so với đường phân bố lý thuyết. Vì vậy đường cong đo giải - giải tích chỉ nên dùng để tính chuẩn động chiều năm mà thôi.

Sai số độ lệch quan phương tương đối của đại lượng trong bình nhiều năm của chuẩn được tính theo công thức (4.5). Khi có quan hệ giữa các số liệu các năm thì tính theo công thức:

\[\sigma_{Q_0} = \frac{100C_v}{\sqrt{n}} \sqrt{1 + 2 \frac{r}{n} \left(\frac{n - 1 - r^n}{n - 1 - r} \right)} \geq \frac{100C_v}{\sqrt{n}} \sqrt{1 + r} \] (5.24)

với \(r \) - hệ số tương quan động chiều giữa các năm.

Sai số quan phương của hệ số biến đổi được tính theo công thức (với phương pháp xác định là phương pháp momen):

\[\sigma_{C_v} = \frac{\sqrt[4]{1 + C_v^2}}{\sqrt{2n}} - 100\%. \] (5.25)

Nếu xác định \(C_v \), bằng phương pháp động đăng cục dài thì sai số được xác định theo công thức:
\[\sigma_{C_v} = \sqrt{\frac{3}{2n(3 + C_v^2)}} \times 100\%. \] (5.26)

Độ dài của chuỗi năm quan trắc được coi là đủ để xác định \(Q_0 \) và \(C_v \) nếu \(\sigma_{Q0} \leq 5-10\% \) và \(\sigma_{Cv} \leq 10-15\% \). Giá trị trung bình dòng chảy năm khi đó được coi là chuẩn.

Sai số quan phương trung bình tương đối của việc xác định hệ số bất đối xứng \(C_s \) phụ thuộc vào \(C_v \) và số năm quan trắc được tính theo công thức:
\[\sigma_{C_s} = \frac{6}{\sqrt{n}} \sqrt{1 + 6C_v^2 + 5C_v^4} \times 100\%. \] (5.27)

5.4. XÁC ĐỊNH THAM SÓ THÔNG KÊ ĐỒNG CHÁY NAM KHI QUAN TRẮC NGẪN

Trong môi trường hợp khí mà sai số tính toán vượt quá mức cho phép với chuỗi hiện có tức là chuỗi số liệu ngàn và cần phải tính toán tổng thống qua việc kéo dài tiếp liệu của sông tương tự. Đặc biệt việc tính toán \(C_v \) cần phải dựa vào chuỗi dài nếu như thành phần hiện thời của chuỗi, do lập lại các năm ít và nhiều nước rắt hiếm hoi và vice versa làm \(C_v \) tăng lên rất nhiều.

Đặn \(C_v \) về thời kỳ nhiều năm dựa trên cơ sở sự tương ứng của dao động đồng chảy trong thời gian dòng quan trắc ở các tuyến do trong một thời kỳ dài và điều độ bao toàn tỷ lệ của \(C_v \) với chiều dài của chuỗi. Có thể kéo dài \(C_v \) bằng phương pháp giải tích hoặc do giải khi số năm dòng quan trắc ở phạm dài và phạm ngạn có từ 10-15 năm.

Phương pháp giải tích thể hiện qua công thức sau:
\[C_{vN} = C_{vNa} \frac{M_{Na}}{M_N} \tan \alpha \] (5.28)

với \(C_{vN} \) - giá trị nhiều năm của hệ số biến đổi; \(M_N \) - giá trị nhiều năm của chuẩn dòng chảy năm; chỉ số \(\alpha \) - chứng tỏ giá trị thuộc về sông tương tự; \(\tan \alpha \) - góc nghiêng của quan hệ giá trị dòng chảy năm với trực sông tương tự hay là hệ số góc.

Quan hệ giữa hai chuỗi đồng chảy trong thời kỳ dòng năm quan trắc cần thoả mãn mối yếu cầu đối với quan hệ đồ khi tính toán chuẩn dòng chảy năm.

Công thức thứ hai để xác định hệ số biến đổi \(C_v \) thông qua độ lệch quan phương:
\[\sigma_N = \frac{\sigma_n}{\sqrt{1 - r^2 \left(1 - \frac{\sigma_{Na}^2}{\sigma_{Na}^2} \right)}} \] (5.29)

với \(\sigma_n \) và \(\sigma_{Na} \) - độ lệch quan phương của dòng chảy năm tính cho thời kỳ dòng năm quan trắc n tại phạm tính toàn và phạm sông tương tự; \(\sigma_N \) và \(\sigma_{Na} \) - giá trị nhiều năm của chúng; \(r \) - hệ số tương quan giữa dòng chảy năm hai phạm trong thời kỳ dòng năm quan trắc. Như vậy hệ số biến đổi tại phạm tính toàn được dẫn về công thức:
\[C_{vN} = \frac{\sigma_N}{\sigma_{Q0N}} \] (5.30)

Ghép công thức (5.29) và (5.30) ta nhận được một công thức tính giá trị hệ số biến đổi nhiều năm:
\[C_{vN} = \frac{C_{vNa}}{\sqrt{1 - r^2 \left(1 - \frac{\sigma_{Na}^2}{\sigma_{Na}^2} \right)}} \frac{Q_{0aN}}{Q_{0aN}} \] (5.31)

hoặc:

66
$$C_{eN} = \frac{C_{eq}}{\sqrt{1 - r^2} \left[1 - \frac{C_{ewa} Q_{owa}}{C_{eNa} Q_{ena}} \right]}$$ \hspace{1cm} (5.32)$$

với C_{ew} và Q_{ew} - hệ số biên độ và dòng chảy trung bình năm tại trạm tính toán cho thời kỳ năm quan trắc ngắn. Các kỹ hiệu khác đồng nhất với các công thực trên.

Công thức đơn giản nhất được sử dụng là:

$$C_{eN} = C_{ewa} \frac{C_{ew}}{C_{eNa}}.$$ \hspace{1cm} (5.33)

Ngoài các phương pháp trên cũng có thể sử dụng phương pháp độ đải - giải tích để xác định hệ số biên độ dòng thời với hai tham số primera. Theo dõi cách làm trên hình 5.5.

![Hình 5.5. Xác định các tham số đặc trưng theo phương pháp độ đải - giải tích](attachment:image.png)

Trên hình 5.5 từ đường cong đảm bảo được cho sông trường tự xác định các giá trị tổng độ đặc trưng (b). Từ các tung độ độ chuyên sang hình 5.5 (a) trên cùng một tỷ lệ được quan hệ lưu lượng của sông trường tự và sông tính toán. Từ quan hệ đó nhận các tung độ đặc trưng cho sông tính toán rồi theo các công thức (5.20) đến (5.23) xác định các tham số đặc trưng cho sông tính toán. Sự tiếp theo của phương pháp này là có thể xác định được các tham số theo quan hệ lưu lượng giữa sông trường tự và sông tính toán đủ được cho lưu lượng trọng lớn. Nếu sai số xác định C_q thì phương pháp này so với tính toán theo chuẩn năm quan trắc không vượt quá 10% thì đúng số liệu theo tính toán. Trong thực hiện tính toán dòng chảy năm, tái liệu quang thác thường thiếu dữ liệu dòng chảy cho trước. Trong trường hợp ấy cần phải sử dụng các phương pháp giải tiếp - phương pháp nội sụy địa lý hoặc tương tự, các công thức thực nghiệm hoặc các độ thị quan hệ. Trước khi sử dụng các phương pháp giải tiếp cần phải đặt các dòng chảy năm và các yếu tố xác định các dao động độ để lựa chọn phương pháp tính toán thích hợp.

Dao động khi hậu đã xác lập được các chu kỳ là 35 năm và 11 năm gắn liền với chu kỳ chuyển động của các hành tinh trong hệ Mặt Trời. Dao động dòng chảy năm cũng quan sát thấy tính động Bộ với dao động của khí hậu theo kết quả nghiên cứu của Oppocov E.V. Các nghiên cứu về sau làm sáng tỏ kết luận là dao động dòng chảy năm gắn liền với dao động nhiều năm của mực, bốc hơi và đẳng hướng lưu khí quan hệ.

Tuy nhiên kết quả các công trình nghiên cứu dao động nhiều năm của dòng chảy năm chứng tỏ sự thiếu tính chu kỳ rõ rệt ở chính các dao động vi các pha dòng chảy riêng biệt thường có độ đại khác nhau. Chính vì thế có cơ sở dựa quan điểm thống kê xác suất để tính toán dao động dòng chảy năm như là tác động đa nhân tố.
Khi nghiên cứu dao động dòng chảy năm thương xuất phát từ phương trình cân bằng nước đối với thời gian một năm. Từ phương trình cân bằng nước thấy rằng dao động dòng chảy năm phụ thuộc vào sự biến động của dòng chảy mặt và dòng chảy nghiêm mà cụ thể là phụ thuộc vào sự biến động của mực nước, tốc độ và hiệu (X-Z) cũng như mức độ phân tán và bổ sung nước ngầm.

Nhu vậy, nguyên nhân chính của dao động dòng chảy nằm là sự biến đổi đại lượng năm của các yếu tố khí hậu trong lưu vực sông ngòi (mực, tốc độ và sự phân bố của chúng trong năm) liên quan tới đặc thù của hoàn lưu không khí nằm hay nằm khác. Ngày cả việc phân bố lượng mưa không đều trên lưu vực có thể dẫn tới việc thay đổi diện tích hoạt động của lưu vực, điều này thể hiện rõ rệt vào những năm ít mưa. Nguyên nhân quan trọng thứ hai của sự dao động dòng chảy nằm là phân nước ngầm cung cấp cho sông ngòi, là thành phần điều hòa tự nhiên nước sông. Vậy những yếu tố tác động tới dao động dòng chảy nằm đều mang tính dải căn.

5.5. XÁC ĐỊNH THÁM SÓ THỐNG KÉ DÒNG CHÁY NĂM KHI KHÔNG Có QUAN TRÁC

Khi kết quả các tài liệu quan trắc trên lãnh thổ ta phát hiện rằng nhiều đặc trưng dòng chảy mang tính dải nên sâu sắc. Vì vậy khi thiếu hoàn toàn dòng chảy có thể dựa vào tính chất này để sử dụng các phương pháp giải tiếp như nội (ngoài suy) hoặc dùng các bản đồ, các công thức thực nghiệm trên cơ sở quá trình khảo sát đối với tài liệu trên lãnh thổ. Để xác định hệ số biến đổi \(C_v \) dòng chảy năm D. L. Xocolovski đề nghị công thức (H.5.6):

\[
C_v = a - 0.063 \lg (F+1) \tag{5.34}
\]

với \(a \) - tham số diện tích đơn vị; 0,063 là hệ số góc của đường thẳng phụ thuộc của \(C_v \) vào \(\lg (F+1) \).

![Hình 5.6. Mô phô thức \(C_v = f(\lg F) \)](image)

Một số tác giả cho rằng hệ số biến đổi phụ thuộc chủ yếu vào các yếu tố khí hậu và lượng nước sông ngòi. Dán sau đây một số công thức diễn tính:

Công thức L.K. Davudov:

\[
C_{v Y} = \frac{C_{v X}}{\alpha} \sqrt{\frac{1 - r^2}{1 - r^2_{Z0}}} \tag{5.35}
\]

Công thức N.P. Tsebotarev:
\[C_{vY} = \frac{C_v X(F)}{\alpha_{0.5}} \text{ với } C_v X(F) = \frac{C_v X(t)}{F^{0.077}}, \] (5.36)

Công thức K.P. Voskrexenski:

\[C_v = \frac{A_t}{M_r^{0.4}(F + 1000)^{0.1}}, \] (5.37)

trong đó \(\alpha \) - hệ số dòng chảy; \(A_t \) - tham số tổng hợp; \(r \) - hệ số tương quan nổi; \(F \) - diện tích lưu vực;

Hệ số bắt đối xứng \(C_s \) xác định theo quan hệ \(t \) số \(C_s/C_v \) tùy theo các thông số về độ ẩm và các yếu tố mật độ khác. Thông thường thực tế tính toán gặp các tỷ lệ sau: vùng thừa ẩm thì \(C_s = 1.8-1.5 \ C_v \); còn vùng khô hạn \(C_s = 1.5 \ C_v \).

5.6. XÂY DỰNG DƯỠNG CONG DAMILY BÀO VÀ TÍNH TOÁN ĐỘNG CHÂY NAM VỚI XÁC SUẤT AN TOÀN CHO TRƯỚC

Trên đây chúng ta đã xét các phương pháp xác định tham số \(Q_0 \) hay là \(M_0 \). \(C_v \) và \(C_s \) để đúng được các phân bố lý thuyết động chạy nằm theo các toa độ thuyết đối hoặc tương đối.

Với sự biến đổi tương đối tương đối đường cong (hệ số mỏ dồn), khi \(K_0 =1.0 \) tức là đối với đường cong đầm bảo vò thử nguyên căn có hai tham số \(C_v \) và \(C_s \). Phương pháp này rất tiến để khai quật tham số và so sánh với các tính toán hàng loát.

Phương trình đường cong phân bố nhị thức được Phoster tích phân đối với các giá trị nguyên \(p = \frac{4}{C_s^2} - 1 \) và nhiều sơ cho các giá trị còn lại rồi lập bảng tính độ lệch tổn đồ của đường cong đầm bảo với điểm giữa \((K_0 = 1) \) với \(C_v = 1.0 \) đối với \(C_s \) khác nhau và độ đầm bảo \(p\% \), có nghĩa là bảng giá trị:

\[\Phi_p = f(C_s, p\%) = \frac{K_0 - 1.0}{C_s}. \] (5.38)

Từ đó suy ra:

\[K_p = \Phi_p C_v + 1.0 \] (5.39)

có nghĩa là để xác định hệ số mỏ dồn \(K_0 \) đối đầm bảo \(p\% \) (tức là \(K_p \)) nhỏ bằng căn có \(\Phi_p \) nhận với giá trị \(C_s \) rồi cộng thêm 1.0 với từng độ đường cong biếu điểm lệch với \(K_0 = 1.0 \) (H.5.7).

Vi \(\Phi_p = f(C_s, p\%) \) nên giá trị \(p\% \) (\(\Phi_p \)) lấy theo hàng của bảng tương ứng với đại lượng \(C_s \).

Nhu vậy xác định theo tài liệu quan trảc hệ số biên đối và bắt đối xứng, có nghĩa là xác định các momen diện tích bậc hai và ba của đường cong phân bố thực nghiệm; chúng ta nhận chúng với momen bậc hai và ba của diện tích đường cong phân bố nhị thức và sử dụng bảng tính lý thuyết phân phương trình để xây dựng đường cong lý thuyết với suất đầm bảo cho trước.

Các tham số \(C_v \) và \(C_s \) không cù đối ổn định (đặc biệt là \(C_s \)) và đường đầm bảo tính toàn lý thuyết tuân theo các điểm do chọn. Do vậy khi xây dựng và lựa chọn đường đầm bảo cần biết \(C_v \) và \(C_s \) tác động đến dạng của nó ra sao (H.5.8).

Trên hình 5.9 thể hiện các đường đầm bảo xây dựng với các giá trị \(C_s \) khác nhau và \(C_v = 0.50 \). Đường cong được xây dựng với \(C_s = 0.5 \) đối xứng và cắt đường nằm ngang ở đường \(K = 1.0 \) và tại điểm tương ứng với 50% suất đầm bảo (trùng vị trung vị tâm phân bố). Theo mức độ tänd \(C_s \) thì độ ấn của đường cong càng tăng, tức là tăng các già trị biên và giảm các giá trị nằm giữa chiều. Giá trị \(C_s \) càng tăng, nhánh
với $C_s < 0$ (bất đối xứng âm) đường cong có phần giữa đối với từng độ hẫng ở hai đầu. Các đường cong với C_s khác nhau nhưng cùng một C_v cắt nhau tại hai điểm. Để ngoại suy và làm tròn các đường cong đảm bảo thực nghiệm trên thực tế tính toán ngày nay sử dụng đường cong phân bố nhị thức và đường cong phân bố gamma ba tham số không phụ thuộc vào phương pháp xác định tham số của chúng.

Lưu lượng nước với suất đâm bao cho trước $p\%$ được xác định theo công thức:

$$Q_p = K_p Q_0$$ \hspace{1cm} (5.40)

với K_p - hệ số mở dồn với suất đâm bao $p\%$ cho trước lấy từ đường cong đâm bao tính toán lý thuyết; Q_0 - giá trị lưu lượng trung bình.
Để tính toán các tham số và tung độ của các đường cong đảm bảo, xây dựng các đường cong và xác định các giá trị lưu lượng với các điều kiện cố, thiếu hoặc không có tài liệu còn có thể sử dụng phương pháp mô hình hóa mà chúng ta sẽ xét ở các chương sau.

Hình 5.9. Ảnh hưởng của hệ số C_s đến dạng đường cong đảm bảo (với $C_v = 0.5$)

Hình 5.10. Ảnh hưởng của các tham số (C_v, C_s) đến dạng đường cong đảm bảo Kriski và Menkel

a) $C_s = 3 C_v$, 1- $C_v = 0.1$; 2- $C_v = 0.3$; 3- $C_v = 0.5$
b) $C_v = 0.5$, 1- $C_s = 0.5$; 2- $C_s = 1.0$; 3- $C_s = 1.5$
Chương 6

SỰ PHÂN PHÓI ĐỒNG CHÂY TRONG NĂM

Đồng chảy trong sông không những thay đổi hàng năm mà còn thay đổi theo các thời kỳ trong năm. Quá trình thay đổi đồng chảy trong năm mang tính chất chu kỳ rõ rệt, hình thành các pha nước lơn nhỏ xen kẽ lẫn nhau, phụ thuộc vào tình trạng tuân hoàn của các yếu tố khí hậu. Sự thay đổi có tính chu kỳ này được gọi là sự phân phối đồng chảy trong năm.

Sự phân phối đồng chảy trong năm thường không phù hợp với yêu cầu dùng nước. Chi có năm vắng qui luật tự nhiên của sự phân phối đồng chảy trong năm mới có thể lợi dụng nguồn tài nguyên thủy lợi sông ngòi một cách có ích và hợp lý. Vì vậy việc nghiên cứu phân phối đồng chảy trong năm có ý nghĩa thiết thực đối với việc thiết kế và khai thác các công trình thủy lợi, tính toán đúng tích kho nước, công suất phát điện và cả trong giai đoạn vận hành của kho nước.

Xác định sự phân phối đồng chảy trong năm còn có ý nghĩa nghiên cứu để hỗ trợ việc vận hành các công trình thủy điện và các điều kiện địa lý tự nhiên để sử dụng trong trường hợp thiếu tài nguyên.

6.1. CÁC NHÂN TỐ ÁNH HƯỞNG ĐẾN SỰ PHÂN PHÓI ĐỒNG CHÂY TRONG NĂM

Tình hình phân phối đồng chảy trong năm thể hiện qua các đặc trưng cơ bản như biên độ, thời gian và thời kỳ xuất hiện các lưu lượng tương ứng. Phân phối đồng chảy trong năm thường biểu thị dưới hai hình thức: đường quá trình lưu lượng và đường dự trị lưu lượng tuỳ theo yêu cầu của việc thiết kế các công trình.

Đường quá trình lưu lượng mô tả sự thay đổi đồng chảy theo thời gian, thường được biểu thị dưới dạng đường quá trình lưu lượng bình quân tuân (10 ngày), thang hoặc mùa (hoặc tỷ số phân trăm số với toàn năm), cho ta khái niệm trừ quy so với sự thay đổi đồng chảy ở các thời kỳ trong năm.

Đường dự trị lưu lượng bình quân ngày (con gọi là đường tiên suất lưu lượng bình quân ngày), cho ta khái niệm thời gian dự trữ một lưu lượng lớn hoặc bằng một lưu lượng nạo độ, đường dự trị mức nước bình quân ngày thường được sử dụng khi tính toán các công trình thủy điện, giao thông thủy v.v...

Khí nghiên cứu đường quá trình đồng chảy trong năm trong trường hợp có đầy đủ tài liệu thủy văn, người ta thường chú ý những dạng quá trình di chuyển đi biểu cho những năm hoặc những nhóm năm nước lớn, nước bé, nước trung bình. Trong trường hợp thiếu hoặc không có tài liệu, người ta giải quyết theo hai hướng. Hướng thứ nhất là xác định từ phương trình cần bằng nước của từng thời kỳ trong năm trên cơ sở biết được lượng mưa, lượng bốc hơi của các mặt đê khác nhau và lượng trroz nước trong khu vực. Андреянов đã sử dụng phương pháp này để xác định phân phối đồng chảy trong năm. Phương pháp này xuất phát từ lý thuyết cần nguyên đồng chảy nên có ý nghĩa rất lớn đối với, song việc xác định các thành phần trong phương trình cần bằng nước không đơn giản là lượng trroz nước của lưu vực, vì vậy thường dẫn đến sai sót lớn. Hướng thứ hai là nghiên cứu tính chất khu vực của các dạng phân phối đồng chảy, đúng phương pháp tương tự thủy văn để xác định phân phối trong năm của lưu vực thiếu tài liệu.

6.1.1. Vài trò các nhân tố ảnh hưởng đối với sự phân phối đồng chảy trong năm

Sự phân phối trong năm của dòng chảy là do các nhân tố khí hậu và mặt định quyết định. Mặc dù phân phối đồng chảy giữa các năm khác nhau của cùng lưu vực rất khác nhau nhưng vẫn có thể tìm thấy những nét chung nhất phân ảnh các đặc điểm về khí hậu và mặt đê ở nơi đó.

72
Nhân tố khí hậu quyết định đặc tính nổi chung của sự phân phối dòng chảy trong một khu vực địa lý nào đó, còn các nhân tố địa lý tự nhiên khác phân ảnh sự điều tiết thiên nhiên và nhân tạo của dòng chảy trong sông mà với một mức độ nào ngày, chúng có thể làm thay đổi một cách đáng kể tính hình phân phối sẵn có.

Xuất phát từ phương trình cân bằng dòng chảy của lưu vực:

\[y = x - z \pm \Delta v \pm \Delta w \] \hspace{1cm} (6.1)

ta thấy sự phân phối dòng chảy trong năm phụ thuộc vào lượng mưa (x), lượng bốc hơi (z), trừ lượng nước của lưu vực (Δv) và sự trao đổi nước ngầm với lưu vực bên (Δw) trong từng thời gian. Sự phân phối mưa và bốc hơi đều yêu do điều kiện khí hậu quyết định. Lượng trừ nước của lưu vực và sự trao đổi nước ngầm với lưu vực bên do điều kiện địa lý tự nhiên quyết định.

Điều kiện địa vật lý cũng có tác động tới các yếu tố khí hậu ảnh hưởng giải tiếp tới phân phối dòng chảy trong năm cũng như yếu tố từng trích lưu vực làm cho phân phối dòng chảy điều hòa hơn. Trong yếu tố này cần chú ý tới diện tích lưu vực, ao hồ, đầm lầy, rừng và điều kiện địa chất thô những.

Những hồ tự nhiên có nước sông lưu thông có tác dụng điều tiết rất mạnh, nó trừ nước trong mùa lũ, rối bọ sung lại cho sông sau lũ làm cho dòng chảy điều hòa hơn. Tác dụng điều tiết của hồ quyết định bởi độ sâu của hồ và đúng tích chứa lưu. Theo Xękŏlŏsvki lưu vực có nhiều hồ lớn dòng chảy các thăng nhất điều hòa chỉ thay đổi từ 0,9 đến 1,10 lần dòng chảy năm, còn lưu vực ít hồ dòng chảy các tháng dao động rất lớn từ 0,15 ÷ 4,30 lần dòng chảy năm. Đảm lây cũng có tác dụng tương tự như hồ ao, đầm lầy có diện tích rộng như Đồng Tháp Mười có khả năng chứa lưu rất lớn. Ngoài ra do ao hồ đầm lầy có mặt thoát lên nên cũng làm tăng lượng bốc hơi của lưu vực.

Rừng và lợp phủ thực tế làm giảm dòng chảy mặt và làm tăng dòng chảy ngầm, lợp là mục rất dày trong rừng, bề diễn lưu lại cho đất đối xứng có khả năng trừ một lượng nước khá lớn, làm giảm hàn lượng dòng chảy mặt, nhất là thời kỳ đầu mùa lũ. Vào giữa mùa lũ khả năng trừ nước của tầng lục mặt vẫn còn nhưng do nước bao hòa nước nên tác dụng làm giảm lượng dòng chảy mặt có giảm đi. Ở các lưu vực có nhiều rừng, lượng dòng chảy mùa kết được lượng nước ngầm của lưu vực cung cấp làm cho phân phối dòng chảy điều hòa hơn. Ở những lưu vực quá nhỏ không hùng được nước ngầm thì tác dụng của rừng nguyệt lai, làm cho dòng chảy kém điều hòa hơn.

Diệu kiện địa chất thô những của lưu vực quyết định quá trình thảm và sự hình thành lượng nước ngầm nên có ảnh hưởng đến lượng dòng chảy mùa kết. Ảnh hưởng của địa chất đến phân phối dòng chảy trong năm rõ rệt nhất ở vùng đã nói; các hang động đã với có tác dụng khác nhau đối với phân phối dòng chảy điều hòa hơn, nhưng một mặt hang động ngầm cũng làm cho dòng chảy mùa kết mất hoàn toàn.

Vai trò của diện tích lưu vực cũng ảnh hưởng rất lớn đến phân phối dòng chảy trong năm. Lưu vực càng lớn, diện tích trung gian càng rộng bao gồm nhiều khu vực có điều kiện hình thành dòng chảy khác nhau thì phân phối dòng chảy trong năm càng điều hòa, mưa lũ dòng sông sẽ không lên xung đột objection. Lưu vực càng lớn, lòng sông càng cấu tạo của dòng sông được nhiều nước ngầm, về mùa khô kết sồng sẽ không khó can. Những lưu vực nhỏ, do sông cai không sâu, không hùng được nước ngầm nên mùa kết dòng chảy bị gián đoạn hoàn toàn. Ở nước ta do lượng mưa khá phong phú, lòng sông cai sâu nên diện tích giới hạn đổ khá nhỏ.

Ngoài những nhân tố trên, hoạt động của con người như làm thay lơi, trồng cây gây rừng, chứng xói mòn... cũng có tác dụng đến phân phối dòng chảy trong năm. Việc canh tác không khoa học, việc chặt phá
rừng làm cho có do phát điện mà nên cần cõi có ấn hưởng xâu đến điều kiện hình thành dòng chảy, làm cho phân phối dòng chảy trong năm không đều hòa.

6.1.2. Tình hình phân phối dòng chảy ở Việt Nam

Ở nước ta lượng nước mùa lũ chiếm 70+80% lượng nước cả năm, tháng có lượng nước lớn nhất ở sông thuộc Bắc Bộ thường là tháng VII, tháng VIII lượng nước chiếm 15 + 35% lượng nước cả năm. Từ Nghệ An tới Quang Bình tháng có lượng mực lớn nhất là tháng X, có thể chiếm 50% lượng nước cả năm, các sông Đông và Tây Trườn Sơn tháng có lượng nước lớn nhất là tháng IX, tháng X, lượng nước có thể chiếm 20 +35% lượng nước cả năm. Các sông Nam Bộ tháng có lượng mực lớn nhất là tháng IX và tháng X, chiếm khoảng 30% lượng dòng chảy năm.

Đối với mùa mưa nhiều và mưa lũ ở nước ta là mùa mưa bể (mưa khô) và mùa cạn. Mưa mưa bể (mưa khô) có thể nói bắt đầu từ tháng XI đến tháng IV năm sau chung cho cả nước, song có xê dịch theo từng dãy phương giống như mưa mưa nhiều. Kết thúc mùa mưa là bắt đầu mưa cạn ở các nơi. Tháng XI bắt đầu mưa cạn ở Bắc Bộ và Thanh Hóa, riêng ở Đông Bắc, Tây Bắc mưa cạn đến sớm hơn, tháng XII bắt đầu mưa cạn ở Nam Bộ và Tây Nguyên, vùng đệm nằm giữa Đồng và Tây Trườn Sơn mưa cạn muộn nhất, bắt đầu từ tháng I. Ở Trung Bộ mưa cạn bị phân cắt thành hai kỳ tựa giữa là mùa mưa cạn. Lùi tiến mùa mưa làm cho dòng chảy tăng lên, song thời gian có lũ ngần vì vậy lượng nước cật tháng không lớn, do đó vẫn xếp vào mùa cạn.

Lượng nước trong mùa khô rất nhỏ chỉ chiếm từ 10 + 20% lượng mưa năm, ở Tây Nguyên có năm lượng mưa chỉ chiếm 5% lượng mưa năm, số ngày không mưa liên tục có khi kéo dài tới 120 + 130 ngày. Mưa mưa và mùa khô ở Tây Nguyên có sự tương phản nhau rõ rệt.

Dòng chảy mùa cạn chủ yếu do lượng nước ngầm cung cấp, lượng mưa cạn chiếm 20 + 30% lượng nước cả năm. Mực nước các sông ngòi ở thời kỳ đầu mưa cạn xuống thấp dần, mặc dù trong thời kỳ này chỉ rớt cốc dồi dột qua Bắc Bộ có gây mưa như lượng mưa nhờ và không kéo dài nên xu thế chung của mực nước vẫn giảm. Từ Nghệ An trở ra không khí lạnh qua biên nhám âm và nhiệt, vào tối đất liên gấp dầy Trườn Sơn nên mưa rớt ở vùng này có mạnh hơn, làm cho lượng dòng chảy đầu tháng mưa cạn (tháng XIII) ở vùng khu IV từ cơn xấp xỉ 8% dòng chảy năm, vùng Đông Bắc tháng X, vùng sông Hồng vào tháng XI lượng dòng chảy thường còn từ 6 + 8% lượng dòng chảy năm, các vùng khác lượng nước thấp hơn.

Giai đoạn ổn định của mưa cạn thường kéo dài khoảng 3 tháng, lượng dòng chảy nhỏ hẳn so với các tháng trong năm, lượng nước của 3 tháng này chỉ chiếm 7 + 8%, ở vùng ít nước tỷ lệ còn 3 +4%.

Giai đoạn cuối mưa cạn hoạt động của giới mùa đã phát triển, nhưng vào thời gian này thường xuyên xuất hiện dòng chảy nhỏ nhất, do là lúc nước ngầm cung cấp cho số lượng giá trị nhỏ nhất, tuy có mực nhưng dòng chảy sông ngòi chưa được bớ sung.

6.2. NÀM ĐẠI BIỂU MƯA NĂM VÀ ĐỒNG CHÂY NĂM

6.2.1. Lựa chọn năm đại biểu

Có nhiều phương pháp xác định sự phân phối dòng chảy trong năm, trong đó phương pháp thường được sử dụng là phương pháp năm đại biểu(mưa năm và dòng chảy năm). Phương pháp năm đại biểu là phương pháp chọn sự phân phối của năm thực do làm môi, dùng tỷ số phân phối của từng tháng năm đó nhận với giá trị lưu lượng năm ứng với tận suất bảo đảm sẽ được mô hình phân phối dòng chảy thiết kế.
Phân phối dòng chảy của những năm nhiều nước và ít nước thường có đặc điểm khác nhau vì vậy ta có thể chọn năm đại biểu nhiều nước, năm đại biểu ít nước và năm đại biểu nước trung bình.

Năm đại biểu nước trung bình được chọn từ một năm thực do có tổng lưu lượng dòng chảy năm xấp xỉ với giá trị trung bình của tổng lưu lượng dòng chảy trong nhiều năm và dạng phân phối (dường quá trình năm dòng chảy) gần với dạng trung bình nhiều năm.

Năm đại biểu ít nước (hoặc nhiều nước) được chọn từ một năm thực do có tổng lưu lượng dòng chảy năm cực tiểu (hoặc cực đại).

6.2.2. Phân phối dòng chảy theo phương pháp năm đại biểu

Sau khi chọn được năm đại biểu người ta tính tỷ số phần phối của từng tháng, % của lưu lượng dòng chảy tháng so với toàn năm đó là dạng phân phối dòng chảy trong năm của năm đại biểu, từ phân phối dòng chảy của năm đại biểu ta sẽ tìm được phân phối dòng chảy ước với tần suất thiết kế.

6.3. PHƯƠNG PHÁP PHÂN PHỐI DÒNG CHẤY TRONG NĂM THEO QUÁ TRÌNH NGẪU NHĨN

Sử dụng phương pháp phân phối dòng chảy trong năm theo quá trình ngẫu nhiên ta có thể dùng chuỗi Mác cóp đơn để mô phỏng quá trình năm dòng chảy. Phương pháp này có một lợi lường của một tháng thứ i tạo bởi hai thành phần:

- Phân lưu lượng xuất hiện theo quy luật chi phí thuộc vào lưu lượng xuất hiện tháng trước Qi-1, được biểu thị bằng trị số trung bình điệu biến:

\[Q'_i = \bar{Q}_i + \gamma_{i,i-1} \frac{\sigma_i}{\sigma_{i-1}} (Q_{i-1} - \bar{Q}_{i-1}) \] (6.1)

trong đó: \(\bar{Q}_i, \bar{Q}_{i-1} \) - lưu lượng trung bình nhiều năm tháng thứ \(i \) và \(i-1 \),
\(\sigma_i, \sigma_{i-1} \) - khoảng chênh lệch chuẩn phương của lưu lượng tháng thứ \(i \) và \(i-1 \),
\(\gamma_{i,i-1} \) - hệ số tương quan của lưu lượng tháng thứ \(i \) và \(i-1 \).

Phân lưu lượng xuất hiện theo quí luật ngẫu nhiên phụ thuộc vào xác suất điều kiện, được biểu thị bằng \(\phi = f(P_i, C_u) \)

- \(\phi \) - khoảng chênh lệch tiêu chuẩn,
- \(P_i \) - xác suất điều kiện giá trị ngẫu nhiên của tháng thứ \(i \),
- \(C_u \) - hệ số không đổi xứng của phân phối xác suất điều kiện.

Theo lý thuyết xác suất ta có:

\[\phi_i = \frac{Q_i - Q'_i}{\sigma_{Q'_i}} = \frac{Q_i - Q'_i}{\sigma_{i,\gamma_{i,i-1}}} \] (6.2)

trong đó \(\sigma_{Q'_i} \) là khoảng chênh lệch chuẩn phương của phân phối xác suất điều kiện.

Thay giá trị \(Q'_i \) vào trên ta có:

\[Q_i = \bar{Q}_i + \gamma_{i,i-1} \frac{\sigma_i}{\sigma_{i-1}} (Q_{i-1} - \bar{Q}_{i-1}) + \phi_i \sigma_i \sqrt{1 - \gamma^2_{i,i-1}} \] (6.3)

Các thông số thống kê \(\bar{Q}_i, \bar{Q}_{i-1}, \gamma_{i,i-1} \) được xác định theo tài liệu thực do bằng phương pháp tạo số ngẫu nhiên ta có thể xác định được xác suất điều kiện \(P_i \), vì vậy lưu lượng thứ \(i \) được hoàn toàn chính xác nếu biết lưu lượng tháng thứ \(i-1 \), biết được lưu lượng tháng thứ \(i \) ta lấy tính tiếp cho tháng sau, cứ thế ta được một quá trình lưu lượng trung bình.
Đo việc sử dụng máy tính khả phổ biến nên ứng dụng lý thuyết quá trình ngẫu nhiên vào tính toán thủy văn ngày càng được mở rộng, song do số liệu thủy văn còn quá ít, việc xác định các thông số thống kê cơ bản chưa bảo đảm, hơn nữa giải thiết quá trình lưu lượng trung bình thường tuân theo quá trình McCóp don cùng chưa có sức thuyết phục nên cũng còn những hạn chế nhất định.

6.4. ĐƯƠNG CONG DUY TRỊ LƯU LƯỢNG

6.4.1. Ý nghĩa và các đặc trưng biểu thị

Đường cong duy trì lưu lượng là một hình thức biểu thị phần phổ động chảy trong năm thời khoa học, nó biểu thị thời gian xuất hiện của trị số bằng hoặc lớn hơn một lưu lượng nào đó nên còn gọi là đường tân suất thời gian lưu lượng ngày.

Đường duy trì lưu lượng của một năm có thể về theo tài liệu lưu lượng thực đo (bảng lưu lượng bình quân ngày của năm đó), cần cứ vào biên độ lưu lượng của năm đó ta chia đầy số lưu lượng ngày toàn năm thành một số cấp thông kế số ngày xuất hiện của mỗi cấp lưu lượng, rồi cộng số ngày xuất hiện theo cấp lưu lượng từ lớn đến nhỏ (hoặc biểu thị bằng số phần trăm).

Để xây dựng đường duy trì lưu lượng nhiều năm có thể tiến hành theo hai cách:
- Ghép toàn bộ lưu lượng bình quân ngày thành một chuỗi rồi cũng làm như đối với từng năm. Đường duy trì lưu lượng xây dựng theo cách này được gọi là đường duy trì lưu lượng tổng hợp, có ưu điểm là nó không chỉ được toàn bộ biến đổi hay đổi của lưu lượng bình quân ngày trong suốt thời gian có tài liệu, nhưng khối lượng thành ồn lớn.
- Tính toán độ đường duy trì lưu lượng cho từng năm rồi bình quân gọi là đường duy trì lưu lượng trung bình. Trong số biến niêm thong đã về đường duy trì lưu lượng từng năm, nên cách làm như vậy thường đơn giản nhất hơn.

Trong phạm vi tân suất biên độ từ 10% đến 90% thì hai tân suất trung bình và tổng hợp gần như trùng nhau. Ô đầu trên ($p < 10\%$) đường tổng hợp nằm trên đường trung bình, ngược lại ô dưới ($p > 90\%$) thì đường tổng hợp nằm dưới đường trung bình. Đối với việc dùng nước rỗng đường trung bình không an toàn. Để khắc phục điều này trong tính toán thực tế thường vẽ theo năm đầu biz, đầu biz năm nhiều nước, trung bình, ít nước và phân trong phạm vi đầu đầu cần cứ vào giá trị Q_{max} và Q_{min} do được trong chuỗi năm thực do để sử dụng thích hợp.

Đối với lưu vexc phân phổ dòng chảy có dạng điều hòa, duy trì lưu lượng có dạng thái dương và ngược lại. Để biểu thị sự phân phổ dòng chảy không đều trong năm Xôkolópxki đưa vào khái niệm số điều tiết từ nhiệm φ.

$$\varphi = \int_{0}^{1} p\,dk$$

trong đó

- p- thời gian duy trì(%) lưu lượng K (K là hệ số mô đun)
- φ chính là tổng diện tích của đường cong duy trì lưu lượng với các giá trị $K = 1.0$ so với toàn bộ diện tích của đường lưu lượng; φ biểu thị tỷ số giữa phần động chảy chảy qua tuyến cửa ra của lưu véc trong thời gian lưu lượng trong sống nhỏ hơn lưu lượng bình quân nhiều năm so với lưu lượng dòng chảy toàn năm. Phân động chảy này chủ yếu do nước ngầm và một phần nước mặt cung cấp. Khí phân phổ dòng chảy có dạng điều hòa (lưu véc điều tiết tốt) thì hệ số điều tiết tự nhiên lớn.

Để tính toàn bằng tích khoảng nước ngoài ta đưa ra khái niệm hệ số lợi dụng dòng chảy.
trong đó K_d - hệ số mô đun lưu lượng ứng với lưu lượng nước dùng

Lực độ dường tích kho nước được tính bằng biểu thức:

$$V_{kho} = W \left(K_d - \varphi(K_d) \right)$$

W - Tổng lưu lượng dường chảy năm trung bình nhiều năm.

6.4.2. Phương pháp mô hình hoá dường cong dướng tri lưu lượng

Để có thể tổng hợp dường dướng tri lưu lượng đúng cho trường hợp thiếu tài liệu thực đo, người ta thường mô hình hoá dường cong dướng tri lưu lượng bằng các phương trình toán học. Ông Liên Xô thường có biểu thức giai tích của Urvaiep(1941) với cách dường dướng cong không đối xứng của Goolrich (1926) là phù hợp và có dạng:

$$P = 1 - 10^{-C \left(\frac{K_{max} - K}{K - K_{min}} \right)}$$

trong đó:

C và n - tham số của dường cong;

P - tần suất thời gian ứng với hệ số mô đun lưu lượng K, tính theo số thập phân;

K_{max}, K_{min} - hệ số mô đun lưu lượng ứng với lưu lượng bình quân ngày lớn nhất và nhỏ nhất.

Đối với lưu vực có tài liệu dựa vào các tòa dường dướng tri lưu lượng ta có thể xác định thô số C và n bằng cách loga hoá hai lần (6.6) rồi xác định chung theo quan hệ dường thẳng:

$$\lg[n \log(1 - p)] = \log C + n \log \left(\frac{K_{max} - K}{K - K_{min}} \right).$$

Đối với lưu vực thiếu tài liệu, thô số C và n được xác định theo lưu vực tương tự hoặc theo bản đồ phân khu đã tổng hợp sẵn.

Ưu dường dường cong Urvaiep cho điều kiện thủy văn nước ta, thấy có nhiều trường hợp quan hệ (6.7) không hoàn toàn là đường thẳng mà gây khúc, mất khác ý nghĩa vật lý - thủy văn của thô số C vẫn không rõ ràng, mặc dù tác giả đã cho C và n quan hệ với diện tích lưu vực, mặc dô ao hồ.. chằng hạn:
c = \((F+1)^{0.32} + 0.01 f_{ao}^{0.95}\) \hspace{1cm} (6.8)

n = \phi (F+1)^{0.05} \hspace{1cm} (6.9)

trong đó:

- \(f_{ao}\) - mức độ hỗ trợ ao (%)
- \(\phi\) - hệ số xác định theo bàn đồ, gọi là thông số địa lý
- F- diện tích lũ lụt.

Vì vậy, qua nghiên cứu đặc điểm thủy văn nước ta, chúng tôi đề nghị sử dụng hàm mực dương:

\[K = K_{max} e^{-\alpha \phi} \] \hspace{1cm} (6.10)

trong đó:

- \(\alpha, \beta\) - các tham số của đường cong

Loga hoá hai lần biểu thức (6.10) ta có:

\[\lg[\ln K_{max} - \ln K] = \lg \alpha + \lg \alpha + \beta p^* \] \hspace{1cm} (6.11)

ta đề đạt rút ra được:

\[\alpha = \ln \frac{Q_{ng max}}{Q_{ng min}} \] \hspace{1cm} (6.12)

\[\beta = \frac{\ln K_{max}}{\alpha} / \lg p^* \] \hspace{1cm} (6.13)

với \(p^*\) là lượng trợ tương ứng với \(K=1.0\).

Hệ số điều tiết tự nhiên \(\phi\) có thể xác định theo biểu thức giải tích dưới đây:

\[\phi = \alpha^{-m} \sum_{n=0}^{n} d_{m} \left(\frac{a^{m}}{\alpha^{x}} \right) \] \hspace{1cm} (6.14)

trong đó \(m = 1/\beta; x = \ln k; a = \ln K_{max}\).

Qua thử tính cho miền Bắc nước ta, trong trường hợp không có lũ đặc biệt lớn và hạn cực nhỏ thì dạng hàm mực này khá phù hợp.

6.5. PHƯƠNG PHÁP XÁC ĐỊNH MÔ HÌNH PHÂN PHỐI ĐỒNG CHÀY NAM KHI CÓ TÀI LIỆU QUAN TRÁC

Mô hình phân phối đồng chảy trong năm hiện nay đang được sử dụng rộng rãi có hai hướng:

- Phương pháp Andráyanôp là phương pháp tổ hợp thời khoảng với số liệu không ít hơn 10-15 năm.
- Phương pháp năm diện hình.

6.5.1. Phương pháp V.G. Andráyanôp

Theo phương pháp này, đồng chảy trong năm, trong thời kỳ giới hạn và trong mùa giới hạn cũng một tận suất. Phương pháp này là mô hình phân phối cho năm thủy văn (từ đầu mùa lũ năm trước đến cuối mùa kết năm tiếp theo). Thống thường năm thủy văn không trùng với năm lịch đại.

Trồng số đồng chảy trong năm các thời khoảng được biểu thị bằng tổ các lưu lượng bình quân.

Đường tận suất kinh nghiệm được xây dựng theo trục số đồng chảy năm, đồng chảy thời kỳ giới hạn. Phương pháp xác định các tham số thống kê và đường tận suất lý luận được trình bày ở chương 5.
Trị số dòng chảy của mùa cơn lại (không phải là mùa giới hạn) được xác định bằng hiệu của dòng chảy năm với dòng chảy giới hạn.

Sự phân phối dòng chảy theo tháng trong mùa được lấy bình quân đối với mỗi nhóm năm của mùa tính toán (nhóm năm nhiều nước bao gồm những năm với tán suất dòng chảy mùa can $P% < 33\%$; nhóm năm nước trung bình bao gồm những năm với tán suất dòng chảy mùa can $33\% \leq P\% \leq 66\%$; và nhóm năm ít nước $P% > 66\%)$.

Đối với mỗi mùa trong nhóm nước tương ứng, lưu lượng bình quân tháng được sắp xếp trong một hàng theo thứ tự giảm dần và ghi rõ tên theo tháng lịch. Đối với tất cả những năm cùng nhóm nước, tiến hành cộng các lưu lượng trung bình tháng cùng cơ và tính tổng các lưu lượng bình quân trong tháng trong cả mùa (lấy tổng theo hàng sau đó lấy tổng theo cột). Dựa vào kết quả tính tổng lưu lượng ở từng cột xác định được sự phân phối dòng chảy theo tháng trong mùa theo tỷ lệ phần trăm so với lưu lượng dòng chảy cả mùa. Các tỷ số phân trăm của tháng theo thứ tự được gán cho các tháng có tán số xuất hiện nhiều nhất (trong từng cột).

Nhận các tỷ số phân trăm (hệ số phân phối) của các tháng trong mỗi mùa với tỷ lệ phần trăm lưu lượng nước của mùa đó và ghi các mùa lại theo trình tự thời gian, bắt đầu từ mùa nhiều nước, ta phân phối dòng chảy trong năm. Với mỗi năm có tỷ số phân phối dòng chảy năm tương ứng (nhóm năm nhiều nước, nhóm năm nước trung bình và nhóm năm ít nước).

Theo ý kiến của nhiều người nghiên cứu thủy văn thì phương pháp này có nhiều ưu điểm vì đã sử dụng lưu lượng thống tin chứa trong chuỗi quan trắc dòng chảy nhiều nhất (so với các phương pháp khác), với tán suất năm do dặc 12 - 15 năm, cho ta kết quả khả quan và chính xác.

6.5.2. Phương pháp năm diện hình

Ta tiến hành phân phối dòng chảy năm ứng với tán suất thiết kế theo mô hình phân phối của một năm đã xảy ra, được chọn làm năm diện hình.

Tùy theo yêu cầu tính toán có thể chọn năm diện hình nhiều nước, năm trung bình hoặc năm ít nước.

Theo quy phạm tạm thời tính toán thủy văn, dạng phân phối dòng chảy trong năm của năm thực do có thể đưa năm diện hình nên tán suất dòng chảy năm, dòng chảy trong thời kỳ giới hạn, dòng chảy trong mùa giới hạn gắn bằng nhau và tán suất dòng thời của các trí số độ phù hợp với yêu cầu sử dụng nguồn nước, hoặc chi sai lệch trong khoảng 10 - 15%. Nếu chênh lệch, phải hiệu chỉnh các giá trị dòng chảy tổng tháng trong mùa giới hạn và các tháng còn lại trong năm.

Trong trường hợp không chọn được năm diện hình thì ta phải dùng phương pháp khác tính phân phối dòng chảy năm thiết kế.

6.6. TÍNH TOÁN PHÂN PHỐI ĐỒNG CHẤY NĂM KHI THIỆU TÀI LIỆU QUAN TRẮC

Khối không đủ tài liệu quan trắc hoặc không có tài liệu người ta thường sử dụng các phương pháp sau đây để xây dựng mô hình phân phối dòng chảy trong năm:

- Phương pháp lưu vực tương tự khi điều kiện địa lý tự nhiên dòng nhất.

- Phương pháp quan hệ giữa các thông số phân phối của các yếu tố ảnh hưởng

6.6.1. Phương pháp lưu vực tương tự

Phương pháp lưu vực tương tự để tính phân phối dòng chảy trong năm được tiến hành trong trường hợp dòng nhất về các điều kiện địa lý tự nhiên và khi tài liệu do đã song song ở hai sông nghiên cứu và
tuồng tự không ít hơn một năm. Sông tuồng tự phải thỏa mãn điều kiện là lớp dòng chảy trong mùa ít nước không khác nhiều so với sông nghiên cứu.

Đối với sông ít được nghiên cứu có thể dùng các đặc trưng phân phối dòng chảy sau đây của sông tuồng tự.

- Ranh giới các mùa (mùa mưa, mùa mưa, thời kỳ giới hạn), ba tháng nhỏ nhất (mùa giới hạn) v.v..
- Tỷ lệ dòng chảy bình quân của mùa so với dòng chảy năm (%)
- Tỷ số giữa hệ số biến động của dòng chảy các mùa (mùa giới hạn, thời kỳ giới hạn) so với hệ số biến động của dòng chảy năm.
- Sự phân phối dòng chảy trong mùa ít nước cho các nhóm năm nhiều nước, trung bình, ít nước.

6.6.2. Quan hệ giữa các thông số phân phối với các nhân tố ảnh hưởng (xây dựng cho từng vùng)

Trường hợp không có sông tuồng tự đáng tin cậy có thể phân phối dòng chảy theo các quan hệ giữa các thông số phân phối dòng chảy (tỷ lệ dòng chảy bình quân các mùa so với dòng chảy năm, tỷ số giữa hệ số biến động của dòng chảy năm v.v.) với các nhân tố ảnh hưởng (mô đun chảy năm, độ cao trung bình lưu vực, tỷ lệ rừng, diện tích ao hồ, diện tích lưu vực v.v.).

- Tỷ lệ phân phối mùa cần (thời kỳ giới hạn) được xác định bằng công thức sau:
 \[K_{cn} = \sum \frac{Q_{e,n}}{Q_{n,m}} \times Y_{e,n} \% \] \((6.15) \)

- Tỷ lệ phân phối mùa chuyển tiếp (những tháng còn lại trong mùa cần) xác định bằng công thức sau:
 \[K_1 = K_{c,n} - K_{3, min} \% \] \((6.16) \)

- Tỷ lệ phân phối ba tháng nhỏ nhất (mùa giới hạn) được xác định bằng công thức sau:
 \[K_{3, min} = \sum \frac{Q_{min}}{Q_{n,m}} \times Y_{min} \% \] \((6.17) \)

- Tỷ lệ phân phối mùa lũ được xác định bằng công thức sau:
 \[K_2 = 100 - K_{can} \% \] \((6.18) \)

- Quan hệ giữa tỷ lệ phân phối mùa cần với môđun dòng chảy bình quân nhiều năm có dạng:
 \[K_{can} = b -aM_0 \] \((6.19) \)

trong đó \(a, b \) - các tham số địa lý, xác định theo từng vùng (có bảng traสาร).

6.6.3. Dùng đường tận suất lưu lượng bình quân ngày

Khác với đường qua trình lưu lượng bình quân, đường tận suất lưu lượng bình quân ngày chỉ cho phép ta xét thời gian duy trì một lưu lượng nào đó ở trong sông mà không xét được tính hình phân phối dòng chảy theo thời gian.

Đường đường được phổ biến ở Liên Xô do V.A Urrvaev và V.G. Andráyanôp kiến nghĩ có dạng sau:

\[P = 1 - 10^{\left(\frac{K_{max} - K}{K - K_{min}} \right)^n} \] \((6.20) \)

trong đó:

- \(P \) - tận suất bảo đảm trong ứng với hệ số môđun \(K \), tính theo số thập phân.
6.6.4. Phương pháp tính phân phối động chạy trong năm thiết kế

Nơi sử dụng của phương pháp này là xây dựng đường tân suất động chạy bình quân tháng, xác định các lưu lượng tháng thiết kế (cùng một tân suất), ghép các trị số thiết kế theo các thang của năm ta thu được phân phối động chạy trong năm thiết kế.

Phương pháp xây dựng phân phối động chạy trong năm thiết kế cùng tân suất cho đến nay có nhiều ý kiến, tuy uội điểm của phương pháp này là cho ta kết quả khách quan, song nó có những điểm rất lớn là phân phối động chạy trong năm được xây dựng là phân phối giảm, hầu như không có khả năng xây ra trong thực tế, vì vậy người ta ít dùng phương pháp này.

6.6.5. Phương pháp điều tiết toàn chuỗi

Theo phương pháp này khi tính toán thiết kế người ta dùng toàn bộ tài liệu lưu lượng bình quân tháng của tất cả các năm quan trắc và tính ra các đặc trưng, thiết kế cần thiết.

Để tính toàn phương pháp này tài liệu quan trắc yếu cầu phải dài. Phương pháp này thường được dùng trong việc tính toán thủy năng để xác định công suất bảo đảm, lưu lượng nước dùng bảo đảm v.v...

Ưu điểm của phương pháp này là sử dụng được một lượng thông tin lớn chưa trong chuỗi quan trắc, kết quả tính toán có mức độ tin cậy cao. Song dễ có phân phối động chạy trong năm ta lại phải sử dụng các phương pháp trình bày.

6.6.6. Phương pháp phân tích quá trình ngẫu nhiên

Nơi sử dụng của phương pháp này là xem quá trình phân phối động chạy trong năm là một quá trình ngẫu nhiên. Đây là một phương pháp hiện nay đang phát triển, song ứng dụng của nó trong thực hành gặp nhiều khó khăn về mặt thủ thuật về phương pháp tính.
Lũ là một pha của chế độ dòng chảy sông ngõi có lượng cấp nước lớn nhất trong năm. Ở vùng nhiệt đới nguồn cấp nước chủ yếu của sông ở phía nước này là do mưa. Dòng chảy lơn nhất là tri số lưu lượng tức thời hoặc tri số bình quân ngày đếm lớn nhất trong năm.

Lũ do mưa được tạo thành trên các sông do sự động đàm của các thể tích nước cơ sở trên các khu vực khác nhau của lưu vực với tỷ lệ khác nhau qua quá trình chảy truyền đi qua trầm không chế.

Lũ được tạo thành chủ yếu do ảnh hưởng của các điều kiện địa lý tự nhiên phức tạp, nên nghiên cứu lũ không thể bỏ qua việc nghiên cứu các thành tố tạo lũ, đặc trưng cho quá trình hình thành lũ.

7.1. Ý NGHĨA NGHIỆN CỨU CỦA VÀ CÁC ĐÁY TRUNG Dòng Chày Lớn Nhất

Nghiên cứu và tính toán dòng chảy lũ và dòng chảy lơn nhất có tầm quan trọng về thực tế lẫn ý nghĩa khoa học.

Ý nghĩa khoa học của việc nghiên cứu dòng chảy lũ và dòng chảy lơn nhất là chứng xác định đặc điểm chung của chế độ dòng chảy sông ngõi một vùng. Các đặc điểm cơ bản của dòng chảy lũ như thời gian duy trì lũ, cường độ lên xuống, mô đun dinh lũ... thường có quan hệ chặt chẽ với điều kiện khí tượng và địa lý tự nhiên của lưu vực, nó phản ánh sự thay đổi theo không gian của các yếu tố đó.

Ý nghĩa thực tế của việc nghiên cứu dòng chảy lũ ở chỗ nó là số liệu quan trọng cho thiết kế các công trình. Thiết kế với tri số nước lũ thiên nhiên sẽ dẫn đến công trình có thể bị phá hoại. Thiết kế với một trí số nước lũ thiên nhiên, kich thước các công trình chưa lũ, xả lũ lớn sẽ gây ra lãng phí và làm cho hiệu ích công trình giảm thấp.

7.2. CÁC YÊU TỐ ẢNH HƯỞNG TỚI DONG CHAY LỚN NHẤT

Các yếu tố ảnh hưởng tới dòng chảy lũ có thể phân thành hai loại chính: yếu tố khí tượng và yếu tố mất đềm.

Trong yếu tố khí tượng mưa rào có tác động quyết định, cung cấp nguồn dòng chảy. Yếu tố mất đềm ảnh hưởng tới quá trình lũ thải và quá trình tập trung dòng chảy.

Nói đến các yếu tố khí hậu trước hết nói đến mưa. Mưa tác động đến dòng chảy cực đại ở tổng lượng mưa, cường độ mưa và tính chất của mưa.

Chế độ mưa ở nước ta rất phong phú, có tới trên 80% lượng mưa trong năm tập trung vào mùa mưa, số ngày mưa có thể đạt 80 - 120 ngày. Mưa mùa hạ thường có độ nước lớn, lượng mưa cũng khá lớn, đặc biệt là mưa giông, nhưng mưa giông thường diễn ra trên diện tích không lớn trong một thời gian ngắn, vì vậy nó thường có ảnh hưởng tới sự hình thành dòng chảy lũ trên lưu vực nhỏ. Đối với lưu vực lớn, lưu do tới hỗ của nhiều hình thái thời tiết như giông, bão, dừng đứt, hỗ tự nhiên đối, rạnh thấp... diễn ra liên tục và bao gồm một diện tích lớn, làm cho mức nước sống cao và duy trì trong thời gian dài rất dễ gây ra lũ lụt.

Vi dụ: Trận lũ lớn trên sông Hồng tháng VIII năm 1971 là do xoay thành tại dải hội tụ kết hợp với bão gây nên, mưa phân bố trên diện tích rộng, lượng mưa từ 200 - 300 mm trên lớn chiếm 85% diện tích lưu vực, lượng mưa từ 400 - 500mm cũng có diện tích không nhỏ.

Xét trong một trận mähr thì cường độ mưa tác thời luôn luôn thay đổi, tuy thời gian duy tri cường độ mưa lớn không dài nhưng có tác dụng quyết định hình thành lưu lượng đỉnh lũ. Ở nước ta những trận mưa...
dài với lượng mực lớn thường có nhiều định với thời gian có đường do mực lớn. Trường ảm với quá trình mực là quá trình luôn có nhiều định.

Các yếu tố mặt đếm là độ độc suơn, hướng suơn, độ âm của đất, thâm thực vật, diệt trùng v.v... có ảnh hưởng lớn đến tốc độ tập trung nước và độ lớn của lũ.

Vai trò của địa hình, hướng núi đối với sự phân bố lũ cũng khá rõ nét, ở những dãy núi cao, dòng giới thường hình thành những tấm mực lớn như: Đồng Triệu, Bắc Quang, Tam Đảo... những nơi đó có mộc đun đỉnh lũ lớn. Những trận mực giống kết hợp với địa hình thường gây nên những trận lũ lớn trên lưu vực nhỏ.

Yếu tố mặt đếm còn có tác dụng quyết định tới hài hiểu chiến trong quá trình hình thành dòng chảy lũ: quá trình tồn thatio và quá trình tập trung nước trên sườn đồ và sông.

Một phần lượng mực được giữ lại trên lá cây, tan runoff không sinh động chảy, lượng nước đó phụ thuộc vào mặt độ và loại hình thực vật trên lưu vực. Tàn runoff (nhất là tàn runoff nhiều tầng) có khả năng giữ lại một lượng nhỏ mực khá lớn, nhưng rất khó đánh giá đúng mức ảnh hưởng của nó đến dòng chảy lũ.

Rừng có tác dụng làm giảm dòng chảy mặt, tăng dòng chảy ngầm, làm giảm đỉnh lũ và kéo dài thời gian lũ. Vào đầu mùa lũ tác dụng đó khá mạnh, giữa và cuối mùa lũ, khi lưu vực đã bảo hòa nước tác dụng do giảm đi. Khi mực kéo dài nhiều giờ, lớp nước tồn thatio xuống dòng trên lá cây, tàn runoff có thể bão qua, song tác dụng điều tiết của ao hồ đảm bảo thì không thể bão qua.

Ngoài lượng tồn thatio do tàn runoff giữ lại, một phần lượng mực mà không trong các hang, lò, trũng, ao hồ, đảm bảo. Khi tình tồn thatio đối với những trũng lũ lớn, tồn thatio do thượng không đáng kể, song tác dụng điều tiết của ao hồ đảm bảo thì không thể bão qua.

Khi bát đầu mực hai quá trình trên có thể ảnh hưởng đáng kể, khi mực kéo dài ảnh hưởng của hai quá trình trên giảm dần, còn quá trình thẩm van tiếp tục trong suốt mực và trong cả quá trình tập trung nước trên lưu vực. Vì vậy, lượng nước thẩm thượng được coi là tồn thatio chính khi xây dựng các công thức tính tồn thatio dòng chảy lũ. Khi mực rơi xuống lượng thẩm thượng lúc bát đầu lớn, sau giảm dần và dần đạt tối trị số ổn định. Cường độ thấm vữa thao đổi theo thời gian vữa thao đổi theo không gian vi nó phải thaco chất chê vào các tính chất cơ lý của đất, mà các tính chất đó lại phụ thuộc vào biến động loại đất rất phức tạp theo không gian. Hiền nay, trong tính toán người ta thường lấy một trị số lượng độ thẩm ổn định bình quân cho toàn lưu vực.

7.3. SỰ HÌNH THÀNH ĐỒNG CHÁY LŨ

7.3.1. Sự hình thành dòng chảy lũ

Khi ở một nơi nào dòng trong lưu vực bắt đầu mực, nước mực do lái trên lũ cây, lập các khe rộng trên mặt đất và thẩm ảm lớp đất mặt, lớp nước mực ban đầu bị tồn thatio hoằng toàn. Nếu mực van tiếp tục với lượng đất mực tăng dần và khi lớn hơn lượng đất tham thì vào mặt đất bắt đầu hình thành dòng chảy. Do mực thao đổi theo không gian và thời gian nên có khi hoặc toàn bộ lưu vực hoặc chỉ một phần diện tích của lưu vực sinh dòng chảy. Đồng chảy sinh ra trên các phần của lưu vực dưới tác động của trọng lực lập tác chảy theo sườn độc, một phần tích lại ở các chỗ trũng, hang hốc, phần còn lại tiếp tục chảy từ nơi cao tới nơi thấp. Khi dòng chảy do vào sông, mục nước sông bắt đầu đong cao, trong quá trình chảy trong sông nó không ngừng được bơ sung thêm nước do hai bên sườn độc độc sông do vào. Quá trình chảy tự từ điểm sinh dòng chảy tối mặt cắt của ra là quá trình vô cũng phức tạp.

Trong quá trình sinh dòng chảy và quá trình chảy tự vẻ mặt cắt của ra, dòng nước vẫn không ngừng bị tồn thatio. Trên thực tế các quá trình do xảy ra đồng thời và liên với nhau không thể tách biệt được, nhưng trong tính toán lại phải chia ra để dễ dàng xử lý.
Hình (7.1) là sơ đồ khái quát quá trình mực, quá trình thấm (lượng tồn tại chính trong dòng chảy lưu) và quá trình hình thành dòng chảy. Lúc bắt đầu mực nước nhỏ hơn mực thấm ($a_t < K_t$) lượng mực bị tồn tại hoàn toàn (H_0). Từ thời điểm t_1 mực nước lớn hơn mực thấm, dòng chảy bắt với hình thành. Mực nước tăng lên, mực thấm giảm dần, lọt nước trên bề mặt lưu vực mới ngày một đẩy thêm, mực do sinh dòng tăng lên:

$$h_t = a_t - K_t \quad (còn gọi là mực do cập nước),$$

Lưu lượng ở mặt cắt của ra cũng dần tăng lên. Quá trình mực đạt tới mực do lớn nhất, sau đó mực nước giảm dần, quá trình cập nước kéo dài đến thời điểm t_2 khi $a_t = K_t$, lúc đó lọt nước mặt trên lưu vực đạt giá trị lớn nhất.

Hình 7.1. Sơ đồ khái quát quá trình mực và quá trình dòng chảy

a-Cường độ mực; K-Cường độ thấm; h-Cường độ sinh dòng chảy

Thời gian từ t_0 đến t_2 gọi là thời gian cập nước T_{ca} và

$$Y_{T_{ca}} = \int_{t_0}^{t_1} h_t dt = \int_{t_1}^{t_2} (a_t - K_t) dt$$

(7.1)

$Y_{T_{ca}}$ được gọi là lọt cập nước.

Khi $t > t_2$ nước nhỏ hơn mực do thấm ($a_t < K_t$), tuy quá trình cập nước đã kết thúc nhưng dòng chảy trên sông đạt lưu vực giảm dần và cung cấp nước cho sông tới khi hết nước, quá trình lụ được duy trì một thời gian bằng thời gian chảy tự trên lưu vực t. Vì trong giai đoạn nước rút van còn tồn tại nên lọt cập nước thường lớn hơn dòng chảy riêng lẻ ($Y_{T_{ca}} > \gamma$), nhưng khi tính toán để đơn giản, người ta vẫn cho rằng chúng bằng nhau.

7.3.2. Công thức tính Q_{max} và sơ đồ phương pháp tính Q_{max} từ tài liệu mực rào

Từ công thức cần nguyên dòng chảy ta xét các trường hợp khi thay đổi quan hệ giữa thời gian mực và thời gian chảy truyền.

$$Q_t = \int_{0}^{t} h_{t-f} d_t$$

(7.2)

Duối đây là các trường hợp cụ thể của công thức (7.2) khi hình thành dòng chảy lớn nhất:

- Trường hợp $T_{ca} > t$. Trong công thức (7.2) ta dễ dàng nhận thấy dòng chảy lớn nhất chỉ hình thành ở cuối thời khoảng thứ 4 hoặc thứ 5.
Để so sánh xem (7.3)_1 và (7.3)_2 giải trí nào lớn hơn ta tiến hành: Vẽ trên giấy kẻ linya hình 7.2 lần lượt các diện tích bộ phận \(f_1 h_4, f_2 h_3, f_3 h_4 \) của công thức (7.3)_1 và \(f_1 h_4, f_2 h_3 \) của công thức (7.3)_2.

Nếu ta thấy các giải trí \(h_1, h_2, h_3, h_4 \) trong hình (7.2a) bằng một số bình quân \(h_1' \) và thay \(h_2, h_3, h_4 \) trong hình (7.2b) bằng một số bình quân \(h_2' \) ta van được các diện tích tương đương (7.3)_1 và (7.3)_2. Như vậy có thể viết lại biểu thức \(Q_4 \) và \(Q_5 \) như sau:

\[
Q_4 = h_1' F, \\
Q_5 = h_2' F.
\]

So sánh ta thấy \(h_1' > h_2' \) nên \(Q_5 > Q_4 \) và lưu lượng đỉnh lụ \(Q_{\text{max}} = AQ_5 \).

Từ đây ta có thể rút ra công thức tổng quát:

\[
Q_{\text{max}} = h_\tau F
\]

trong đó: \(F \)- diện tích lưu vực; \(h_\tau \)- đường độ cấp nước bình quân lớn nhất trong thời gian chảy tự \(\tau \).

Để công thức tổng quát này, và dựa vào các đơn vị khác nhau người ta đưa vào hệ số đôi đơn vị \(K \)

\[
Q_{\text{max}} = K h_\tau F = K \frac{Y_\tau}{\tau} F
\]

trong đó \(Y_\tau \)- lốp cấp nước lớn nhất trong khoảng chảy tự \(\tau \)

Từ (7.5) ta thấy toàn bộ diện tích lưu vạc \(F \) thiam gia hình thành đỉnh lụ, nhưng lại chỉ có một phần lưu lượng mưa tham gia vào hình thành đỉnh lụ mà thôi, phần lưu lượng đó là lưu lượng lụn nát rồi xuất lưu vạc trong thời gian chảy tự \(\tau \). Đồng chảy lụn nát trong trường hợp này được gọi là đồng chảy hoàn toàn (với ý nghĩa toàn bộ diện tích lưu vạc tham gia vào việc hình thành đỉnh lụ).

- Trường hợp \(T_{cn} = \tau \) thì không những toàn bộ diện tích mà còn toàn bộ lưu lượng mưa tham gia hình thành đồng chảy đỉnh lụ, đầy đủ điều kiện để phát sinh đồng chảy hoàn toàn.

- Trường hợp \(T_{cn} < \tau \). Giả sử vần lưu vạc như vậy, vị bốn đơn vị diện tích chảy cùng thời gian (\(\tau = 4 \)), nhưng chỉ có 3 khoảng mrena sinh đồng chảy \(h_1, h_2, h_3 \) \((T_{cn} = 3) \), cùng lập luận như trường hợp \(T_{cn} > \tau \) ta có đồng chảy sau:

\[
Q_4 = h_1 f_3 + h_2 f_2 + h_3 f_1
\]
\[Q_4 = h f_4 + h f_3 + h f_2 . \] (7.6)

Lưu lượng lớn nhất trong trường hợp này chỉ có thể xảy ra ở cuối thời khoảng thứ ba hoặc thứ tư. Cùng giả sử trường hợp trước, biểu thị lưu lượng mửa trung bình cho cả 3 thời đoạn bằng \(h_{T_{cn}} \) ta có:

\[Q_{\text{max}} = h_{T_{cn}} \left(\sum_{i=1}^{n} f_i \right)_{\text{max}} \] (7.7)

ở đây \(\left(\sum_{i=1}^{n} f_i \right)_{\text{max}} \) là \(f_2 + f_3 + f_4 \) là phần diện tích lớn nhất trong các phần diện tích tương ứng với thời gian cấp nước \(T_{cn} \).

Đặt \(F_{T_{cn}} = \left(\sum_{i=1}^{n} f_i \right)_{\text{max}} \) ta có:

\[Q_{\text{max}} = h_{T_{cn}} F_{T_{cn}} = \frac{Y_{T_{cn}}}{T_{cn}} F_{T_{cn}} . \] (7.8)

Ta thấy \(Q_{\text{max}} \) chính là lưu lượng lớn nhất tại mặt cắt của ra \(F_{T_{cn}} \) nào đó, mặt cắt này cũng không nhất thiết phải là mặt cắt cuối của lưu vực. Vì vậy lưu lượng lớn nhất ở mặt cắt cuối của ra phải nhỏ hơn lưu lượng tính được từ công thức (7.8) với lệnh do khi chảy nguyên to một mặt cắt của ra song lú bỉ biến dạng. Công thức (7.8) đúng trong thực tế rất khó khăn. Để tiến khi tính toán giá thiết \(\frac{F_{T_{cn}}}{T_{cn}} = F \). Thực chất của giả thiết này là do lưu vực có dạng hình chữ nhật, do đó công thức (7.8) cũng cố gắng như (7.4),(7.5).

Trong nhiều trường hợp, lợp cấp nước lớn nhất \(Y_c \) cũng được biểu thị dưới dạng hệ số dòng chảy, ví vậy (7.5) có thể viết thành:

\[Q_{\text{max}} = K \varphi, \frac{H_c}{\tau} F \] (7.9)

trong đó \(\varphi \), gọi là hệ số dòng chảy định lý

\[\varphi = \frac{Y_c}{H_c} \] (7.10)

\(H_c \) - lợp mửa lớn nhất thời khanh \(\tau \); \(Y_c \) - lợp động chảy lớn nhất trong khoảng \(\tau \)

Đặt \(a_c = \frac{H_c}{\tau} \) cùng độ mửa lớn nhất trong thời khanh \(\tau \) ta có:

\[Q_{\text{max}} = K a_c F . \] (7.11)

Công thức (7.10) và (7.11) là dạng cơ bản nhất của công thức “lý luận” tính dòng chảy lớn nhất từ mửa rào. Hiện nay có tới hàng trăm công thức tính \(Q_{\text{max}} \) khác nhau, các công thức đó có các tham số và thay đổi kết cấu bể ngoài khác nhau, nhưng đều có thể suy ra từ công thức cơ bản trên đây. Sự khác nhau chủ yếu ở cách xử lý và cách tính các thành phần của công thức như \(H_c, a_c \) và \(\tau \), phân sao ta sẽ chỉ ra khá sâu sắc từng thành phần.

7.4. MỪA RÀO VÀ PHƯƠNG PHÁP XÁC ĐỊNH

7.4.1. MỪA RÀO

Mửa rào là loại mửa có cung độ lớn, tập trung trong thời gian ngắn trên diện tích không lớn lắm. Mửa rào - mưa đầm có thời gian mửa rất dài, cung độ mửa trung bình tương đối lớn, diện tích mửa cũng khá rộng, có lúc cung độ rất lớn, dễ gây ra những thiệt lụy nguy hại.
Đặc điểm của mưa rào là đường do mưa thay đổi ổn định theo thời gian. Giai đoạn đầu của mưa rào, đường do mưa không lớn, phần nhiều làm ướt mặt đất và cây cói mà không sinh ra dòng chảy. Giai đoạn cuối của mưa rào, đường do mưa cũng không lớn, chỉ làm kéo dài thời gian rút nước lũ mà không tham gia vào việc tạo nên đỉnh lũ. Thời gian có đường do mưa lớn so với toàn bộ lượng mưa không dài song có tác dụng quyết định trong việc hình thành con lũ, lượng mưa trong thời gian này thường chiếm 80% 90% lượng mưa toàn thời.

Như đã biết đường do mưa rào thay đổi theo thời gian, độ tiêu chuẩn định lượng mưa rào cũng khác nhau, tùy theo thời gian kéo dài mưa.

7.4.2. Công thức triệt giảm lượng do mưa

Cường độ mưa là lượng mưa rơi trong một đơn vị thời gian do bằng mm/ph hoặc mm/h. Trong tình toán thiết kế cần phân biệt cường độ mưa tức thời và cường độ mưa trung bình lơn nhất trong các thời khoảng khác nhau.

Nếu gọi H_T là lượng mưa trong khoảng thời gian T thì cường độ mưa trung bình trong khoảng thời gian do bằng:

$$\sigma_T = \frac{H_T}{T} \text{ (mm/ph; mm/h)}$$ (7.12)

Còn cường độ mưa tức thời là:

$$a_t = \lim_{\Delta t \to 0} \frac{\Delta H_T}{\Delta t}$$ (7.13)

trong đó ΔH_T là lượng mưa trong khoảng thời gian Δt.

![Hình 7.3. Quy trình thay đổi đường do mưa và đường do trung bình lớn nhất](image)

Cường độ mưa tức thời thay đổi liên tục trong suốt quá trình mưa. Thời gian có đường do mưa lớn có tác động quyết định trong việc hình thành đỉnh lũ, do đó người ta thường quan tâm đến cường độ mưa trung bình lớn nhất trong thời khoảng T, để đảm bảo ta còn gọi là cường độ mưa trung bình lớn nhất (a_T), trị số trung bình lớn nhất do năm bảo đỉnh mưa (hình 7.3).

Cường độ mưa thiết kế là chì đường do mưa trung bình lớn nhất trong thời khoảng chảy từ τ của lưu vực ứng với tần suất thiết kế (a_{τ}).

1. Công thức triệt giảm đường do mưa

Từ hình (7.3) ta thấy đường do mưa trung bình lớn nhất giảm dần khi T tăng lên, do đó quy luật triệt giảm đường do mưa theo thời khoảng, đường cong biểu diễn a_T giảm dần theo T gọi là đường cong triệt
giảm mua. Quy luật này lần đầu tiên được E.I.Bécg và M.M. Protòdiakônóp khảo sát trên cơ sở phân tích các bảng mua từ ghi của phần lãnh thổ thuộc châu Âu ở Liên Xô. Công thức đầu tiên mở tả quy luật这条 giảm cường độ mua theo thời khoảng có dạng:

\[a_T = \frac{S}{T^n} \]

trong đó:

- \(n \) - chỉ số tải giảm cường độ mua
- \(S \) - sức mua, bằng cường độ mua lớn nhất (khi \(T = 1 \)).

Các công thức mở tả quy luật这条 giảm cường độ mua theo thời khoảng hiện nay có rất nhiều, thường được biểu diễn dưới dạng tương tự như (7.14)

\[a_T = \frac{S}{(T+c)^n} \]
\[a_T = \frac{S}{C + T^n} \]
\[a_T = \frac{S}{1 + CT} \]

Sức mua \(S \) và chỉ số tải giảm \(n \) được xác định ngược lại từ công thức trên kết quả do đặc của máy đo mua ở ghi. Thí dụ như công thức (7.14):

\[\lg S_p = \lg a_T + n \lg T \]

trong đó \(a_T \) là cường độ mua trung bình lớn nhất ứng với tận suất \(P \).

Dựa vào kết quả đó người ta tiến hành phân vùng và sử dụng trong trường hợp thiếu tài liệu. Trên cơ sở phân tích tài liệu mua từ ghi của Liên Xô với giả thiết cường độ mua trung bình lớn nhất tuân theo quy luật phân bố Gudrich, Viên thủy văn Liên Xô cho rằng sức mua là hàm tuyến tính của \(\lg N (N - thời kỳ xuất hiện lai) \)

\[SP = A + B \lg N \]

Các thông số \(A, B \) được tác giả phân vùng sẵn để sử dụng.

Các công thức trên n được coi là không đối theo \(T \), thực ra điều kiện này không đúng. Qua phân tích tài liệu thực tế ta thấy quan hệ (7.16), điểm \(T_0 \) goi là điểm chuyển tiếp. (Theo kết quả nghiên cứu của Cục Thủy văn Bộ Thủy lợi duyệt cho sử dụng trong thiết kế các công trình loại nhỏ có diện tích lưu vực \(< 100 \text{km}^2 \)).

Ngoài ra Viên thủy chế Giao thông để nghị dùng một công thức chung cho cả miền Bắc, có hiệu chỉnh cho từng vùng.

\[a_T = \frac{10 + 12.5 \lg N}{(T + 12)^{0.66}} \]

trong đó:

- \(K \) - hệ số hiệu chỉnh \(K = \frac{M}{140} \);
- \(N \) - thời kỳ xuất hiện lai
- \(T \) - tinh bằng phết
- \(M \) - lượng mua ngày lớn nhất trung bình

2. Điều con gió这条 giảm mưa \(\Psi(T) \) của Alexàyev.
Đưa vào tài liệu mực tự ghi người ta xây dựng quan hệ giữa lượng mực lớn nhất thờirought H_{p} của lượng mực ngày lớn nhất (ứng với tần suất p) qua hàm \(\psi(\tau) \) như sau:

\[
\psi_{p}(\tau) = \frac{H_{p}}{H_{n_{p}}}.
\] (7.19)

Sau khi xây dựng được hàm \(\psi(\tau) \) ta dễ dàng tính được lượng mực lớn nhất thờirought (ứng với tần suất \(p \)) từ tài liệu mực ngày.

\[
H_{p} = \psi(\tau).H_{n_{p}}
\] (7.20)

cường độ mực trung bình lớn nhất của thờirought ứng với tần suất \(p \) được xác định bằng cách chia từng độ \(\psi(\tau) \) cho thờirought \(T \)

\[
a_{p} = \frac{\psi_{p}(\tau)}{T}.H_{n_{p}}
\] (7.21)

Đặt \(\overline{\psi}(T) = \frac{\psi_{p}(\tau)}{T} \) ta có:

\[
a_{p} = \overline{\psi}(\tau)H_{n_{p}}.
\] (7.22)

Suy ra:

\[
\overline{\psi}(\tau) = \frac{a_{p}}{H_{n_{p}}}.
\] (7.23)

Quan hệ \(\overline{\psi}(\tau) \sim T \) thể hiện sựريط giác \(\frac{a_{p}}{H_{n_{p}}} \) theo \(T \). Người ta đã xây dựng đường congريط giác \(\overline{\psi}(\tau) \) cho các khu vực địa lý khác nhau và phát hiện hai đặc điểm quan trọng sau đây:

- Quan hệ \(\overline{\psi}(\tau) \sim T \) phụ thuộc ít vào tần suất \(P \), có nội chạy nhất vào nhau, nhất là trong phạm vi tần suất nhỏ.

- Trong một khu vực lớn hình dạng \(\overline{\psi}(T) \sim T \) khá ổn định. Do hai đặc điểm trên và cường độ mực trung bình lớn nhất thờirought \(a_{p} \) đề đảm xác định được từ tài liệu mực ngày (khi đã có quan hệ \(\overline{\psi}(T) \sim T \), mét khác nó khác phục được những điểm của công thức đăng (7.14)(7.15) có trị sốريط giác \(n \) không đổi theo \(T \) nên hiện nay đường congريط giác mực Alcătayev ngày càng được ứng dụng rộng rãi trong tình toán thiết kế.

Đối với các tính phái Bắc, Bộ môn Thủy văn công trình trường Đại học Thủy lợi đã xây dựng quan hệ \(\overline{\psi}(\tau) \sim T \) và \(\overline{\psi}(\tau) \sim T \) trong quy phạm tính toán các đặc trưng thủy văn thiết kế (Bộ Thủy lợi).

7.5. VĂN ĐỀ TOLON THẤT VÀ CHẢY TỤ

7.5.1. TOLON THẤT

Lượng tồn thể ban đầu được xét trên nhiều quan điểm khác nhau, trong quy phạm của Bộ Giao thông (Lien Xô) thường xét tới lũ lượng dòng trên thực vật, còn trong công thức Xökölöpski lượng tồn thể ban đầu được chung trong \(H_{b} \).

Lượng tồn thể ảnh hưởng lớn nhất tới sự hình thành dòng chảy lớn nhất và được xét tới trong hầu hết các công thức là thẩm. Lượng tồn thể do thẩm thường được xét theo hai quan điểm sau:

- Một quan điểm xét ca quá trình thẩm như Befanhi, Bôndacôp và Tsêgôdaep, lượng nước cấp được tính bằng biểu số giữa lượng mực và lượng thẩm.

89
Xét lượng tồn tại do thẩm theo quan điểm trên không thấm được trong các công thức tính Q_{max}, bởi vì đường cong thẩm rắn biên do thẩm theo không gần mà việc trung bình hoá chúng thường rất phức tạp và không mang lại kết quả mong muốn.

Quan điểm thứ hai được sử dụng khá rõ ràng, tồn tại được khá rụt qua hệ số dòng chảy. Trong tính toán dòng chảy lũ thường dùng hai khái niệm hệ số dòng chảy lũ:

![Diagram](image)

Hình 7.4. Sơ đồ xác định thời gian cấp nước và lợp cấp nước theo Tsegôp

a) Hệ số dòng chảy tổng lượng (còn gọi là hệ số dòng chảy tranh lũ). Hệ số dòng chảy tổng lượng là tỷ số giữa nước lũ (Y) và lợp mua sinh ra trên lũ đó:

$$\alpha = \frac{Y}{H}. \quad (7.24)$$

được sử dụng đối với dạng công thức thể tích của Xốkôlopksi. Như đã phân tích sự hình thành dòng chảy lớn nhất là do lượng cấp nước trong thời gian chảy tự T, do đó sử dụng hệ số dòng chảy tranh lũ là không hợp lý. Năm 1941, Xrìprnđi đề nghị sử dụng hệ số dòng chảy dinh lũ.

b) Hệ số dòng chảy dinh lũ φ. Hệ số dòng chảy dinh lũ là tỷ số giữa lợp mua lũ lớn nhất trong thời khoảng $T(Y_\tau)$ với lợp mua lớn nhất trong thời khoảng do H_τ:

$$\varphi = \frac{Y_\tau}{H_\tau}. \quad (7.25)$$

Hệ số dòng chảy dinh lũ φ_τ thay đổi theo T, trị số φ_τ giảm dần khi thời khoảng tăng lên. Trong các công thức tính lưu vực lớn nhất người ta thường chọn $T = \tau$ thời gian chảy tự của lưu vực.

$$\varphi_\tau = \frac{Y_\tau}{H_\tau}. \quad (7.26)$$

Sử dụng hệ số dòng chảy dinh lũ tiến lũ khi dẫn giải các công thức tính toán Q_{max}.

Prôtiđiakônp và Đôngôp đã cụ thể hoá hệ số dòng chảy dinh lũ trên cơ sở chỉ thành là tồn tại chính trong dòng chảy lũ.

Vấn đề tính toán tồn tại các dòng chảy lũ rắn rạng là rất phức tạp, hiện nay chưa giải quyết được triệu đề mà thường xử lý theo hai cách sau:

- Cơ thêm lại tồn thái chính, lấy cảm độ thẩm chung cho cả lưu vực bằng cảm độ thẩm ổn định rồi được phương pháp thực nghiệm tại một điểm để xác định.
- Dùng tài liệu thực do về mưa mưa, lũ có trong khu vực tiên hành phân tích tổng hợp địa lý để xác định μ hoặc α.

Về lý luận, cách thứ hai do xuất phát từ tài liệu thực do để tìm ngược ra lại, nên ở một mức độ nhất định nó phản ánh được các yếu tố ảnh hưởng tới tổng ton thất, hiện nay có thể có đầy là một phương hướng đúng đắn. Nhưng hạn chế cơ bản của phương pháp này là không đảm bảo tính đại biểu cho lưu vực nhỏ, mất khả năng qua nhiều khác chất toàn để mắc sai sót, dẫn đến kết quả không phù hợp với thực tế. Cách thử nhất tuy có nhiều thiếu sót về lý luận song đơn giản, kết quả thí nghiệm ít mắc sai sót do tính toàn gây ra, chỉ cần điều kiện thí nghiệm tiếp cận với tình hình thực tế là được.

![Hình 7.5. Hệ số dùng chây ổn định](image)

Trong các công thực tính lũ hiện nay thường dùng bảng đường độ thẩm của M. F. Sripnuri.

Ở nước ta nhiều người đã tiến hành nghiên cứu đường độ thẩm bằng phương pháp vòng dòng tầm hoach từ tài liệu mua rào dòng chây và rút ra các đặc trưng thẩm cho các loại đất thường gặp ở miền Bắc. Giống như đường độ thẩm, hệ số dòng chây thấm lũ phụ thuộc vào nhiều yếu tố khác nhau và biến đổi biến động khá lớn. Một lưu vực trong các yếu tố ảnh hưởng thì độ âm lưu vực trước lũ và lượng mưa sinh lũ dòng vai trò quan trọng.

Hệ số dòng chây tăng dần khi lượng mưa tăng lên và đạt tối thiểu số ổn định lớn nhất (lúc độ lưu vực đã bảo hòa nước) hệ số dòng chây do chì phù thuộc vào điều kiện diệt chát của lưu vực và có thể dùng làm hệ số dòng chây trên lũ thiết kế (H.7.5). Dựa vào tài liệu mưa, lũ thực do, người ta xây dựng quan hệ mưa rào dòng chây của các khu vực đã dùng trong trường hợp tiêu thụ tài liệu. Quan hệ mưa rào dòng chây phận hành được lượng lớn thời tổng hợp, quan hệ do thường có dạng cong, song ở phần có mua lớn được coi là tuyến tính. Theo kết quả nghiên cứu của Cục Thủy văn ở miền Bắc Việt Nam có thể phân làm tám phần khác hệ mưa rào dòng chây.

7.5.2. Chây tự và phương pháp xác định thời gian chây tự

Quá trình tiếp tục nước từ các nơi trên lưu vực về mặt cấu tạo ra gọi là quá trình chây tự. Khi thuyết chuyển động của dòng lũ dựa trên cơ số dòng chây không ổn định ra đời, người ta cho rằng thời gian chây tự không phải là thời gian chuyển động của chất điểm nước mà là thời gian truyền đi của đầu dòng lũ (hiện nay hai định nghĩa trên vẫn song song tồn tại). Quá trình chây tự có thể chia làm hai giai đoạn: giai đoạn chây tự trên sự dòng và giai đoạn chây tự trên sông.

1. Thời toàn thời gian chây tự trên sự dòng

Giả sử ta có một cấu sự dòng như hình (7.6), sự dòng là một mạng phẳng có độ độc và hệ số nhám dòng nhất, nước chuyển dòng trên sự dòng thành một lớp liên tục, lớp cấp nước phân bố đều theo thời
gian và không gian, phương trình liên tục của dòng chảy suôn độc có thể viết:

\[
\frac{\partial q}{\partial x} + \frac{\partial h}{\partial t} = a_i
\]

(7.27)

trong đó:

- \(x\)- khoảng cách từ đường chia nước đến mặt cắt A
- \(q\)- lưu lượng trung bình của một đơn vị chiều rộng suôn độc
- \(h\)- độ sâu mực nước
- \(a_i\)- cuốn độ cáp nước trung bình
- \(t\)- thời gian chảy tự từ đường chia nước đến mặt cắt A.

Bỏ qua số hàng quan tính phương trình vận động việt thành:

\[
V = mJ_d^n R^{n_2}
\]

(7.28)

trong đó:

- \(V\)- tốc độ trung bình của chất diểm nước tại mặt cắt
- \(R\)- bán kính thủy lực (\(R\approx h\))
- \(J_d\)- độ độc trung bình của suôn độc dùng thay cho độ độc mặt nước (vi lớp nước trên suôn độc rất nhỏ)
- \(m\)- độ nhám trung bình của suôn độc
- \(n_1, n_2\)- các số mű.

Thay đổi cách việt (7.28) ta có:

\[
\frac{\partial h}{\partial x} + \frac{\partial h}{\partial t} = a_i
\]

(7.29)

Trên đơn vị chiều rộng của suôn độc ta có lưu lượng:

\[
q = Vh
\]

\[
q = mJ_d^n h^{1+n_2}
\]

(7.30)

Do đó:

\[
\frac{\partial h}{\partial q} = (1 + n_2) mJ_d^n h^{1+n_2}.
\]

(7.31)

Dùng phương pháp đặc trưng giải phương trình trên được:

\[
\frac{dx}{(1+n_2) mJ_d^n h^{n_2}} = \frac{dt}{1} = \frac{dh}{a_i}.
\]

(7.32)

Rút ra:

\[
dx = (1+n_2) mJ_d^n h^{n_2} dt
\]

(7.33)

\[
dh = a_i dt
\]

(7.34)

Tích phân (7.34) ta có:
\[h = a_i t \] (7.35)

Thay (7.35) vào (7.33):
\[dx = (1 + n_2) m J_n^{m} (a_i t)^{n_2} dt . \] (7.36)

Lấy tích phân
\[\int dx = \frac{1}{1 + n_2} (1 + n_2) m J_n^{m} (a_i t)^{n_2} dt . \] (7.37)

ta được:
\[L_d = m a_i^{n_2} J_n^{m} \] (7.38)

Rút ra thời gian chảy tự của nguồn điện:
\[\tau_d = \frac{L_d}{m a_i^{n_2} J_n^{m}} = \frac{1}{1 + n_2} \] (7.39)

trong đó:
\[m_1 = \frac{n_1}{1 + n_2} ; n_2 = \frac{n_2}{1 + n_2} ; n_3 = \frac{1}{n_2 + 1} \]
là các chỉ số lý thuyết;
\[m_d = m \frac{1}{1 + n_2} \]
- thông số tập trung nguồn của nguồn điện.

Nếu thay các chỉ số của công thức (7.39) bằng các chỉ số trong công thức Sédí - Maning ta có:
\[\tau_d = \frac{L_{d,0.6}^{0.6}}{m_d a_i^{0.4} J_d^{0.3}} . \]

Trường hợp cung độ cấp nước thay đổi ta thay a_i bằng cung độ cấp nước bình quân lớn nhất trong khoảng \(\tau_d \)
\[\tau_d = \frac{L_{d,0.6}^{0.6}}{m_d h_d^{0.4} J_d^{0.3}} . \] (7.40)

Tính \(\tau_d \) theo công thức (7.40) trước tiên phải xác định \(h_d \) mà \(h_d \) lại phụ thuộc vào \(\tau_d \) do đó gặp rất nhiều khó khăn.

Hiện nay, để tìm \(\tau_d \) người ta giải đồng thời hệ hai phương trình (7.40) và (7.21)
\[\begin{cases} \tau_d = \frac{L_{d,0.6}^{0.6}}{m_d h_d^{0.4} J_d^{0.3}} . \\ H_d = \varphi \psi \tau_d . \end{cases} \]

Thay (7.21) vào (7.40) ta có:
\[\tau_d = \frac{L_{d,0.6}^{0.6}}{m_d (\varphi H_{d,0.4}^{0.4} J_d^{0.3} [\psi (\tau_d)])^{0.4}} . \] (7.41)

Đặt:
\[\Phi_d = \frac{L_{d,0.6}^{0.6}}{m_d (\varphi H_{d,0.4}^{0.4} J_d^{0.3})} = \tau_d ([\psi (\tau_d)])^{0.4} \] (7.42)
trong đó Φ_d là hệ số thủy địa mạo sông dọc

Quan hệ $\Phi_d = \tau_d \left([\beta] \right)^{0.4}$ được xác định trước theo đường cong thiết giảm mực của từng vùng. Trong quy phạm QP.TL. C6-77 chia miền Bắc nước ta thành 9 vùng mực xảy dựng giữa $\Phi_d - \tau_d$ nến thực tế việc xác định τ_d rất đơn giản, ta chỉ việc xác định τ_d theo các đặc trưng lưu vực và mực ngày (L_d, m_d, J_β, ϕ_{H_m}), rồi theo công thức (7.42) ta sẽ được τ_d.

2. Tính toán thời gian chảy tự trong sông

Tính toán thời gian chảy tự trong sông có thể qui kết thành tính tốc độ chảy tự trong sông bởi vi:

$$\tau_s = \frac{L_s}{V_r}.$$ (7.43)

trong đó:

L_s - độ dài sông tính kể từ nguồn đến mặt cắt cuối cùng; V_r - tốc độ chảy tự trong sông.

Tốc độ chảy tự của một con sông có thể xác định được qua số liệu thủy văn. Khi nước sông đăng cao V_r cùng tăng, khi mức nước sông trên bị thì mức tăng V_r giảm, mức độ giảm nhiều hay ít tùy thuộc vào kích thước và độ hám của bải sông. Khi bải ngập khá sâu thì mức tăng V_r lại tăng lên. Qua số liệu đo đạc thủy văn và các chứng minh thủy lực người ta thiết lập được quan hệ:

$$V_r = 0.6 + 0.7V_m$$ (7.44)

trong đó V_m - tốc độ trung bình lớn nhất tại mặt cắt của ra.

Tốc độ chảy tự trong sông cũng có thể được xác định trên cơ sở công thức Sê di

$$V_r = \frac{1}{n} \bar{J} h^\gamma$$ (7.45)

trong đó:

n - hệ số nhằm lồng sông

\bar{J} - độ đắc mặt nước lấy bằng độ đắc lồng sông

h - độ sâu trung bình đồng chảy

γ, δ - các thông số.

Việc sử dụng độ sâu đồng chảy trong công thức tính V_r rất bắt tiến (do độ sâu đồng chảy biến động mạnh theo đốc sông) vi vậy trong các công thức tính V_r người ta thay h bằng Q dựa trên cơ số h và Q toàn tại quan hệ hám số, như vậy công thức có dạng:

$$V_r = mJ^\alpha Q^\beta.$$ (7.46)

Nur đã trình bày khi lưu lượng chusa tràn qua bải và tràn qua bải quan hệ V_r và Q có thay đổi, song khi tính Q_{max} thiết kế thường tính với tận suất thiết kế nhỏ, lúc đó nước đá tràn qua bải khá sâu nên quan hệ trên vẫn hợp lý. Theo sự khảo sát của Alexayev và trong quy phạm Việt Nam đều lấy $\alpha = 1/3; \beta = 1/4$, như vậy ta có:

$$V_r = mJ^{1/3}Q_{m}^{1/4}$$ (7.47)

$$\tau_s = \frac{L}{mJ^{1/3}Q_{m}^{1/4}}$$ (7.48)

trong đó:

m - thông số tập trung nước trong sông xác định theo bằng.
tốc độ dòng sông chính tính theo %.

3. Quan hệ giữa thời gian chảy tự của lưu vực τ với τ_d và τ_s

Quá trình tắt trung dòng chảy trên lưu vực bao gồm quá trình tắt trung dòng chảy trên suối độc và quá trình tắt trung dòng chảy trong sông, do đó khi xây dựng công thức tính lưu lượng lớn nhất, nhiều tác giả cho rằng:

$$\tau = \tau_d + \tau_s$$ (7.49)

Quan hệ (7.49) cũng có cơ sở nhất định, song trong thực tế không thể phân biệt rạch ròi quá trình tắt trung dòng chảy trên suối độc và trong sông được, vì vậy việc tính riêng τ_d và τ_s chỉ để cho đơn giản và thuận tiện khi tính toán.

Trong nhiều công thức tính lưu lượng lớn nhất người ta bố qua τ_s, chỉ tính thời gian chảy tự trong sông τ_s, giả thiết chỉ chấp nhận được với những lưu vực có τ_d rất bé so với τ_s (lưu vực vừa và lớn).

Röstöm op đã so sánh giữa định lý thực tế và định lý tự nhiên việc có $\tau = \tau_d + \tau_s$ đã làm τ giảm nhở và do đó gây nên định lý tính toán tăng một cách đáng kể. Để cho kết quả tính toán phù hợp với thực tế Röstöm op đề nghị đưa ra công thức tính Q_{max} một hệ số hiệu chỉnh $\gamma (\gamma < 1)$ gọi là hệ số không đều γ được áp dụng theo lưu vực:

$$\gamma = \frac{f(F, h_d)}{h_d}$$

trong đó h_d là không đều của nước bình quân lớn nhất phụ thuộc vào ω. Nhưng việc xác định hệ số hiệu chỉnh γ gặp nhiều phức tạp nên xu hướng hiện nay đề xác định γ là thông qua quan hệ giữa γ với τ_d và τ_s.

Sèremechip xuất phát từ công thức lý luận tính mổ dòng lưu lượng đỉnh $q_{\text{max}} = K\varphi_\tau \gamma = K\varphi_\tau Q(r)H_{\text{up}}$ dựa vào tải liệu thực do lưu lượng và mực để xác định τ, đồng thời cũng dựa vào tải liệu thực do xả dựng quan hệ $q_{\text{max}} = f(F)$ rồi quan hệ q_{m} từ hai phương trình trên để được quan hệ giữa τ với F.

Ngoài hai công thức của Sèremechip sử dụng, Alexávev còn dùng thêm quan hệ (7.48) để xác định quan hệ giữa τ và τ_s được như:

$$\tau = K\tau_s$$ (7.50)

trong nhiều công thức tính toán lấy $K = 1,2$.

Các nhà bác học Xô viết cho rằng công thức (7.50) chỉ phù hợp với lưu vực lớn vi không xét tới thời gian tắt trung dòng chảy trên suối độc. Vì vậy trên cơ sở sơ sáp mổ dòng lưu lượng tự nhiên mổ dòng lưu lượng thực do, họ đưa ra công thức sau đây:

$$\tau = 1,2\tau_{s,1} + \tau_d$$ (7.51)

Công thức (7.51) cũng được vận dụng trong Quy phạm Việt Nam QP.TL. C-6-77 tuy nhiên trong thực tế nước ta nó chưa được kiểm nghiệm.

7.6. CÁC CÔNG THỨC TÍNH DÔNG CHÂY LỚN NHẤT

Các công thức tính dòng chảy lớn nhất dựa trên công thức cơ bản, hoặc có thể đưa về dạng công thức cơ sở (7.9), (7.11) được gọi là công thức “ljùy luôn”. Các công thức của các tác giả khác nhau, chủ yếu ở phương lối giải quyết cụ thể các thành phần trong đó: φ, a_T.

Hiện nay ở nước ta, bên cạnh các công thức của nước ngoại được ứng dụng như các công thức của Bondakôp, Alexávev, Xôkólôpki (Liên Xô cũ), công thức của Viên nghiên cứu thủy lợi Bắc Kinh (Trung Quốc), một số tác giả trong nước cũng đưa ra các công thức tính lớn mới hoặc dựa theo công thức của nước ngoại nhưng các thành số xác định theo tài liệu trong nước như: Viên thiết kế giao thông, Cục Thủy văn và Trường Đại học Thủy lợi...Việc lựa chọn công thức, xử lý các thành số trong nhưng năm đầu hoàn
toàn do chủ quan của người thiết kế. Năm 1974 trên cơ sở tổng hợp các số liệu của miền Bắc, Cục Thủy văn đã soạn thảo cuốn "Hướng dẫn tính lưu lượng lơn nhất". Năm 1979 Bộ Thủy lợi đã cho xuất bản “Quy phạm tính toán các đặc trưng thủy văn thiết kế QP.TL-C-6-77” quy định thống nhất việc sử dụng các công thức tính dòng chảy lơn nhất.

7.6.1. Công thức lượng cỏ giới hạn

Năm 1970, Алексayev đưa ra công thức lượng cỏ giới hạn, năm 1970, Quy phạm QP.TL.C-6-77 sử dụng công thức cỏ giới hạn để tính lưu lượng lơn nhất cho lưu vực có diện tích nhỏ hơn 100 km² với các thông số được xây dựng trên cơ sở tài liệu của nước ta, công thức có dạng:

\[
Q_{np} = A_p \phi H_{np} F \delta_i
\]

trong đó:

- \(H_{np}\) - lượng mưa ngay ứng với tần suất thiết kế \(p\) (mm)
- \(\phi\) - hệ số dòng chảy lũ lấy trong bảng (7.1) tùy thuộc vào loại đất cấu tạo nền lưu vực, lượng mưa ngay thiết kế \(H_{np}\) và diện tích lưu vực \(F\);
- \(A_p\) - tỷ số giữa módun đỉnh lũ ứng với tần suất thiết kế \(p\) với \(\phi H_{np}\). Khi \(\delta = 1\): \(A_p\) lấy trong bảng (7.4) tùy thuộc vào đặc trưng địa hình của lòng sông \(\Phi\), công thức (7.42) và \(\tau\) thời gian chảy tự trên sông đoạn (bảng 7.3);
- \(\delta_i\) - hệ số giảm nhỏ lũ do hồ, xác định theo công thức:

\[
\delta_i = \frac{1}{1+cr_f}
\]

trong đó:

- \(cr_f\) - tỷ lệ diện tích ao hồ %; \(C\) - hệ số phụ thuộc vào lớp dòng chảy lũ, đối với các vũng mưa lũ kéo dài \(C = 0,10\) tượng hợp thời gian mưa mưa ngần \(C = 0.20\).

Bảng 7.1. Hệ số dòng chảy \(\phi\)

<table>
<thead>
<tr>
<th>Loại</th>
<th>Loại đất</th>
<th>Lượng mưa ngay (H_{np})</th>
<th>Hệ số (\phi) dùng cho các diện tích (F(\text{km}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Nhựa dương bề tổng dã</td>
<td><0,1</td>
<td>0,1- 1</td>
</tr>
<tr>
<td>II</td>
<td>Đất sét, đất sét nặng</td>
<td>150</td>
<td>0,95</td>
</tr>
<tr>
<td></td>
<td>150- 200</td>
<td>0,95</td>
<td>0,90</td>
</tr>
<tr>
<td></td>
<td>>200</td>
<td>0,95</td>
<td>0,95</td>
</tr>
<tr>
<td>III</td>
<td>Đất thịt, đất pđơn, đất thịt mầu xấm trong rừng, đất vừng đảm lầy</td>
<td><150</td>
<td>0,85</td>
</tr>
<tr>
<td></td>
<td>150- 200</td>
<td>0,85</td>
<td>0,85</td>
</tr>
<tr>
<td></td>
<td>>200</td>
<td>0,90</td>
<td>0,90</td>
</tr>
<tr>
<td>IV</td>
<td>Đất cãhonit, đất dưới, đất rừng mầu gũ, đất sỏi bồi</td>
<td><150</td>
<td>0,65</td>
</tr>
<tr>
<td></td>
<td>150- 200</td>
<td>0,75</td>
<td>0,70</td>
</tr>
<tr>
<td></td>
<td>>200</td>
<td>0,80</td>
<td>0,75</td>
</tr>
<tr>
<td>V</td>
<td>Đất cát dinh, đất cát có cọc mọc</td>
<td><150</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>150- 200</td>
<td>0,55</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>>200</td>
<td>0,60</td>
<td>0,55</td>
</tr>
<tr>
<td>VI</td>
<td>Cát, đá đa xếp</td>
<td>0,25</td>
<td>0,20</td>
</tr>
</tbody>
</table>

96
<table>
<thead>
<tr>
<th>Tính hình sườn dốc lưu vực</th>
<th>Hệ số md trong trường hợp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Có thửa</td>
</tr>
<tr>
<td>- Sườn dốc bằng phẳng (bể tổng, nhà đường)</td>
<td>0,5</td>
</tr>
<tr>
<td>- Đất đong bằng loại ta cua (hay nứt nê) mặt đất san phương dân chật</td>
<td>0,40</td>
</tr>
<tr>
<td>- Mặt đất thu đón sạch không có gốc cây, không bị cây xơi, vùng dân cư nhà cửa không quá 20%, mặt đê xếp</td>
<td>0,30</td>
</tr>
<tr>
<td>- Mặt đất bị cây xơi, nhiều gốc bui, vùng dân cư có nhà trên 20%</td>
<td>0,20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bảng 7.3. Thời gian chảy tự trên sườn dốc τd (phút)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>φd</td>
</tr>
<tr>
<td>0,5</td>
</tr>
<tr>
<td>1,1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2,5</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>115,0</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>17</td>
</tr>
</tbody>
</table>

τd - xác định theo hệ số thủy triều của sườn dốc φd và vùng mưa (bảng 7.3) trong đó:

\[\Phi_d = \frac{(1000b_c)^{0.6}}{m_d^{0.2} (\phi H_{mp})^{0.3}} \]
(7.54)

\[b_c - độ dài bình quân của sườn dốc lưu vực \]

\[b_c = \frac{F}{1.8(L + \sum l)_t} \]
(7.55)

hoặc

\[b_c = \frac{1}{1.8 \rho} \]
(7.56)

trong đó:

\[L + \sum l_t - độ dài sông chính và các sông nhánh trên lưu vực (km); \phi - mật độ sỏi sông (km/mm²) m_d - lấy theo bảng (7.2) J_d - độ dốc sườn dòng tính theo %. \]

\[\Phi_s = m_d^{1/3} L^{1/4} (\phi H_{mp})^{3/4} \]
(7.57)

97
m - lấy theo bằng (7.3); J - đô độ góc sống chính, tính theo %.

Bảng 7.4. Thông số tập trung nước trong sông m

<table>
<thead>
<tr>
<th>Tính hình lòng sông từ thông nguồn đến ra</th>
<th>Hệ số m</th>
</tr>
</thead>
<tbody>
<tr>
<td>- sông dòng bằng ổn định, lòng sông khá sạch, suối không có nước thường xuyên, chảy trong điều kiến tương đối thuận lợi.</td>
<td>11</td>
</tr>
<tr>
<td>- sông lớn trung bình quanh cơ, bị tắc nghẽn lòng sông miejsc có, có đa chảy không lấp suối không có nước thường xuyên, mầu lưu dòng nước cuốn theo nhiều sợi cuội, bụi cát, lòng sông mục có</td>
<td>9</td>
</tr>
<tr>
<td>- sông vùng núi, lòng sông nhiều đá, mặt nước không phẳng, suối chảy không thường xuyên quanh cơ, lòng sông tắc nghẽn</td>
<td>7</td>
</tr>
</tbody>
</table>

Công thức đường độ giới hạn mang các câu trúc của công thức cơ bản (7.11) xây dựng trên lý thuyết cần nguyên dòng chảy dựa trên 3 gia thiết cơ bản sau:

- Sự hình thành dòng chảy đồng nhất trên toàn lưu vực (cương độ cấp nước dòng dốc), dòng chảy lớn nhất xảy ra trong trường hợp dòng chảy hoàn toàn $T_n > r$.
- Tàn suất hiện lưu lượng lớn nhất lấy bằng tàn suất mực.
- Các tham số a, r tùy không cho dưới dạng tương minh, song đã được giải quyết bằng thủ thuật đơn giản như đường cong thiết chế và các tham số trong giai Φ_1, Φ_2, \ldots các bảng ra cửa sử dụng thuận tiện. Công thức này thích hợp cho việc tính toán dòng chảy lớn nhất đối với lưu vực nhỏ, không yếu cầu độ chính xác cao.

7.6.2. Công thức thể tích

Năm 1943 Xókolopski đưa ra công thức tính toàn lưu lượng lớn nhất cho tới nay vẫn được ứng dụng rộng rãi, công thức được xây dựng trên cơ sở sau:

1. Công thức chỉ xét các yếu tố chủ đạo ảnh hưởng chủ yếu đến dòng chảy lưu trong phạm vi độ chính xác thực dụng và các yếu tố đó có thể xác định một cách dễ dàng.
2. Côi tan suất mực là tan suất lưu.
3. Không những xét lưu lượng đỉnh lưu mà phải xét cả quá trình lưu, lượng lưu và thời gian lưu, thời gian nước dzegoing.
4. Tồn thất được tính bằng hệ số dòng chảy tổng lượng
5. Theo tài liệu thực nghiệm, có thể đơn giản hóa đường quá trình lưu thành hai đường cong parabol gặp nhau tại đỉnh (H 7.7). Trên cơ sở đó ta có phương trình:

![Hình 7.7. Mô hình hoá quá trình lưu parabol](attachment:image.png)

Nhân nước lên:

$$ Q_e = Q_m \left(\frac{t}{t_f}\right)^\alpha $$

với $0 \leq t \leq t_f$

Nhân nước xuống:

$$ Q_s = Q_m \left(\frac{t_s - t}{t_s}\right)^\beta $$

với $0 \leq t \leq t_s$
trong đó: \(t_0, t_1\) như hình vẽ; \(m, n\) là các chi số lũy thừa của nhánh lên, nhánh xuống phần án độ sai khác của đường cong mở tả và đường thẳng trong định lý Ta Lét áp dụng cho tam giác. Tổng lượng lưu bao gồm diện tích nhánh nước lên và nhánh nước xuống:

\[
W = \int_0^\gamma Q_x \left(\frac{t}{t_1} \right)^n dt = \frac{x}{m+1} + \frac{t}{n+1}.
\]

(7.60)

Đặt \(t_1 = \gamma t\) (trong đó \(t_1 > t_1 \rightarrow \gamma > 1\)) ta được:

\[
W = Q_m t_1 \left(\frac{1}{m+1} + \frac{\gamma}{n+1} \right).
\]

hoặc

\[
Q_m = \frac{W}{t_1} (m+1)(n+1).
\]

Chọn

\[
f = \frac{(m+1)(n+1)}{(n+1) + \gamma (m+1)}.
\]

Ta có

\[
Q_m = \frac{W}{t_1} f.
\]

(7.61)

\(f\) được gọi là hệ số hình dạng lưu.

Thay: \(W = \gamma. F = \alpha (H_T - H_o) F\) vào (7.61) ta có:

\[
Q_m = \frac{0.276\alpha (H_T - H_o)}{t_1} f F (m^3 / s),
\]

trong đó:

\(\alpha\) - hệ số dòng chảy truyền;
\(H_T\) - lượng mưa thiết kế (mm) của thời khoạng \(T\) (giờ);
\(H_o\) - lớp nước tồn tại ban đầu;
\(F\) - diện tích lưu vực (km²).

Nếu xét tới triệt giảm đỉnh lưu do hồ ao, đầm lầy và rừng (\(\delta\)) cũng với anh hưởng của nước ngầm \((Q_{ng})\) ta có:

\[
Q_m = \frac{0.278\alpha (H_T - H_o)}{t_1} f F \delta + Q_{ng} (m^3 / s),
\]

(7.62)

Vận dụng trong điều kiện nước ta, các thông số của công thức (7.62) được xác định như sau:

\(f\) - hệ số hình dạng lưu xác định theo sơ đồ phân khu hoặc lấy theo lưu vực tương tự.

\[
f_\alpha = \frac{36000Q_{ma} t_a}{W_a}.
\]

(7.63)

\(Q_{ma}, W_a, t_a\) - các đặc trưng đỉnh lưu, tổng lượng lưu, thời gian lưu lên của lưu vực tương tự;
\(t_1\) - thời gian lưu lên, theo Xốkôlôpxki lấy bằng thời gian chảy tự trong sông.

\[
t_1 = t_a = \frac{L}{3.6V_T} \text{ (giờ)}
\]

(7.64)

\(L\) - chiều dài sông chính (km) (3,6 là hệ số đổi đơn vị)

\[
V_T = 0.7 V_m
\]

(7.65)
V_m - tốc độ trung bình lón nhất ở mặt cắt của ra.

H_T - lượng mưa thiết kế tính theo thời gian chảy tự

$$H_T = H \tau = \Psi(\tau)H_{np}$$ \hspace{1cm} (7.66)

xác định theo các phương pháp đã trình bày ở trên.

Quan hệ $\alpha (H_T - H_0)$ thể hiện quan hệ mưa rào dòng chảy.

Q_{uu} - lưu lượng nước trong sông trước khi có lũ, có thể lấy bằng lưu lượng bình quân nhiều năm đối với lưu vực lón, có thể bỏ qua đối với lưu vực nhỏ.

$$\delta = \delta_1 \cdot \delta_2$$

$$\delta_1 = 1 - K \lg (1 - f_i)$$

với K_1 - phụ thuộc vào tính chất rừng, điều kiện đất đai thay đổi từ 0,1 + 0,2 đối với vùng rừng Viễn Đông (Liên Xô cũ) và 0,2 + 0,3 rừng đất thịt; 0,3 + 0,4 rừng đất phà cât.

f_i - tỷ lệ rừng

$$\delta_2 = 1 - \beta g (1 + f_0 + 0,2 f_d)$$ \hspace{1cm} (7.67)

với f_0, f_d - tỷ lệ diện tích ao hồ, đầm lầy; p - hệ số thay đổi từ 0,6 +0,8.

Công thức Xokôlopxki được điện toán trên cơ sở lý luận chất chẻ rơ ràng, xét được cả tổng lưu lũ và quá trình lũ, xét đến các yếu tốảnh hưởng điều kiện tự nhiên của lưu vực qua các hệ số thiết kế, các tham số trong công thức có thể xác định được nên nó có ý nghĩa thực tế lớn, nhưng công thức cũng tồn tại một số vấn đề là coi dường quá trình lũ chỉ là hai nhánh parabón chỉ phù hợp với những nguồn lưu dồn, dòng chảy không hoàn toàn $(T_{ca} < \tau)$

7.6.3. Công thức thiết kế

Công thức thiết kế biểu thị quy luật giảm dần của módun định lũ theo diện tích:

$$q_m = \frac{A}{F^n}$$ \hspace{1cm} (7.68)_1

hoặc

$$q_m = \frac{A}{(F + C)^n}$$ \hspace{1cm} (7.68)_2

$$q_m = \frac{A}{(F + C)^n} + D$$ \hspace{1cm} (7.68)_3

Đây là loại công thức kinh nghiệm, các tham số có thể xác định từ tài liệu thực đo và tổng hợp cho các khu vực, kết câu công thức đơn giản nên được ứng dụng khá rộng rãi. Tham số A là mồ đun lưu lượng lơn nhất khi diện tích bằng 1km2 ở công thức (7.68)_1 và công thức (7.68)_2, khi $F \to 0$, $C = 1$. A biểu thị cường độ cấp nước lơn nhất từ suôn đốc vào lưu rốn.

Quy luật thiết kế módun lưu lượng đỉnh lũ theo diện tích đã được nhiều tác giả Nga Dbrôgieech, Targôpxki... tim ra ngay từ sau thế kỷ XIX, khi đó công thức chỉ mang tính chất thuận tủy kinh nghiệm. Sau cách mạng tháng X Nga, Kotrerin đã phân tích số liệu đỉnh lũ của 134 trạm trên các sông thuộc phần chia Âu Liên Xô và đã đưa ra phương pháp tổng hợp địa lý các tham số và phân vùng các tham số A, D, n.

Trên cơ sở lý luận đường cong chảy dạng thời ta có thể chứng minh quy luật thiết kế módun dòng chảy lón nhất theo diện tích rạng, giả sử có quá trình mưa.figta quay với thời gian cấp nước $T_{ca} = S$ thời khoảng τ (H. 7.8). Trận mưa đó rồi đều đê trên ba lưu vực song có kích thước khác nhau ở kết cấu nhau (H7.8), với $F_1 < F_2 < F_3$. Tiền hành xây dựng hệ thống đường chảy dạng thời, ta được các diện tích chảy cùng thời gian 100
của cả ba lưu vực và ta cũng có được thời gian chảy tự của 3 lưu vực \(\tau_1 = 3 \tau_0 \), \(\tau_2 = T_{cn} = 5 \tau_0 \), \(\tau_3 = 7 \tau_0 \). Ta xét lưu lượng lớn nhất hình thành trên 3 lưu vực (H 7.8).

Trường hợp 1. \(\tau_1 < T_{cn} \), đây là dòng chảy dạng hoàn toàn ta có:

\[
Q_{max1} = h \tau_1 \cdot F_1; \quad q_{max1} = h \tau_1
\]

Toàn bộ diện tích lưu vực và một phần lưu lượng cấp nước tham gia vào hình thành lưu lượng đỉnh lũ. Trong đó \(h_\tau \) là cường độ cấp nước trung bình lớn nhất trong khoảng \(\tau \)

\[
h, \text{mm/phyt}
\]

![Hình 7.8](attachment:image.png)

Hình 7.8

Trường hợp 2. Lưu vực 2: \(\tau = T_{cn} \), đây vẫn là trường hợp dòng chảy hoàn toàn nhưng lực đỗ \(h_\tau = h_{Tcn} \) nên ta có:

\[
Q_{max2} = h_{Tcn} \cdot F_2; \quad q_{max2} = h_{Tcn}
\]

Toàn bộ diện tích lưu vực và toàn bộ lưu lượng cấp nước hình thành dòng chảy lớn nhất.

Trường hợp 3. Lưu vực 3: \(\tau > T_{cn} \), đây là trường hợp dòng chảy không hoàn toàn, ta có:

\[
Q_{max3} = h_{Tcn} \cdot F_{Tcn}; \quad q_{max3} = h_{Tcn} \cdot \frac{F_{Tcn}}{F_3}
\]

Toàn bộ lưu lượng cấp nước tham gia hình thành lưu lượng đỉnh lũ, nhưng chỉ có một phần diện tích tham gia.

So sánh módun đỉnh lưu \(q_{max} \) của cả ba lưu vực ta thấy:

\[
q_{max1} = h \tau_1 = h_{Tn} \cdot \lambda_1 \quad \text{với} \quad \lambda_1 = \frac{h_{Tn}}{h_{Tcn}} > 1
\] (7.69)
\[q_{max1} = h_{Tcn} \]
\[q_{max2} = h_{Tcn} \frac{F_{cn}}{F} = h_{Tcn} \lambda_3 \]
\[\lambda_3 = \frac{F_{cn}}{F} < 1. \]

Rõ ràng là \(q_{max1} > q_{max2} > q_{max3} \) theo hiện quy luật giảm nhỏ mồ dàn lực lượng định luận khi diện tích tăng.

Khi lưu vực nhỏ hơn lưu vực tối hạn có thời gian chảy tự bằng thời gian cấp nước \(\tau = T_{cn} \) thì sự triệt giảm \(q_{max} \) do tình giảm của lượng đó mực trung bình lớn nhất trong thời khoảng \(\tau \) gây ra. Từ (7.69), ta thấy \(q_{max} \) sẽ tăng dần đến giới hạn là lượng đó cấp nước lớn nhất \(h_{max} \) khi \(\tau \rightarrow 0 \)

\[\lim_{\tau \to 0} q_{max} = h_{max} \]

\(h_{max} \) gọi là mồ dàn cơ bản của dòng chảy lớn nhất tức là mồ dàn đỉnh lưu của một lưu vực với cùng bể \(F \rightarrow 0 \), độ chính là \(A \) trong công thức (7.68).

Khi lưu vực lớn hơn lưu vực tối hạn \((\tau > T_{cn}) \) thì sự triệt giảm mủm dinh lưu do sự triệt giảm tỷ số \(\frac{F_{cn}}{F} < 1 \) gây nên, \(\lambda_3 \) càng nhỏ thì diện tích càng lớn, chênh lệch nhau giữa \(\tau \) và \(T_{cn} \) càng lớn.

Khi tổng hợp quan hệ \(q_{max} = f(F) \) từ tài liệu thực do nhiều tác giả nhận thấy \(q_{max} \) tăng lên khi diện tích lưu vực giảm; nhưng tốt một diện tích nào đó thì \(q_{max} \) không tăng nữa mà nằm ngang và người ta dựa trên thông số c vào để quy luật triệt giảm đúng cho mọi cấp diện tích.

\[q_m = \frac{A}{(F+c)^\phi} \]

Điều đó hoàn toàn phù hợp với tính chất của mực, khi \(\tau \) giảm nhỏ, \(h_t \) tăng lên nhưng tốt một giới hạn \(\tau \) nào đó lượng độ cấp nước trở nên ổn định, \(h_t \) không tăng theo khi \(\tau \rightarrow 0 \).

Nếu ta đã biết \(A \) là mô đun cơ bản của dòng chảy lớn nhất nên công thức trên có thể viết dưới dạng tổng quát:

\[q_m = \frac{A}{(F+c)^\phi} = \frac{Kh_{max}}{(F+c)^\phi} = Kh_{max}^\phi \lambda \]

(7.70)

trong đó:

\(A \) - mô đun cơ bản của dòng chảy lớn nhất \((m^3/s, \text{km}^2) \);
\(h_{max} \) - lượng độ cấp nước lớn nhất \((\text{mm/ph, mm/h}) \);
\(a_{max} \) - lượng độ mực lớn nhất
\(\phi \) - hệ số dòng chảy lưu
\(K \) - hệ số đơn vị \((K = 16,67 \text{ khi } a_{max} \text{ tính bằng mm/ph, } K = 0,278 \text{ khi } a_{max} \text{ tính bằng mm/h}) \).
\(\lambda \) - hệ số triệt giảm của lượng độ chảy lớn nhất ở đây:

\[\lambda = \frac{1}{(F+c)^\phi} \].

Từ công thức (7.70) ta thấy công thức triệt giảm lưu lượng lớn nhất cũng có dạng công thức cơ bản và đó là mối liên hệ giữa công thức lý luận và công thức kinh nghiệm.

Ngày nay công thức triệt giảm có khá nhiều, chúng được coi là nhóm lớn nhất trong các công thức tính toán lưu lượng lớn nhất, bể ngoại chúng có vẻ rất khác nhau, nhưng sự khác biệt giữa chúng thật ra là...
ở phương pháp xác định các tham số và việc xét thêm các yếu tố ảnh hưởng. Tất cả các công thức loại này đều được quy về dạng chung như sau:

\[Q_{mp} = K \frac{A}{F_n} \delta_p \quad (7.71) \]

trong đó: \(q_{mp} \) - mồ đun dinh lũ ứng với tần suất thiết kế \((m^3/s)\); \(K \) - hệ số đối diện với; \(A \) - mồ đun co bàn ứng với tần suất gốc nào đó (theo quy phạm QP.TL.C- 6-77) lấy tần suất 10%; \(\delta_p \) - hệ số xác định sự điều tiết của Lưu vực (hồ, đầm lầy, rừng), \(\lambda_p \) - hệ số chuyển tần suất \((Bảng 7.5)\).

Trong công thức triệt giải thông số \(A \) đồng vai trò quan trọng, sự khác nhau đáng kể nhất trong các công thức này là việc xác định thông số \(A \). Việc tính \(A \) bằng cách ngoài suy quan hệ \(q = f(F) \) khi \(F \to 0 \) không được tin cậy cho lắm vì như đã phân tích, trong phạm vi diện tích nhỏ quy luật triệt giải \(q_{\text{max}} \) không thể hiện rõ, do đó quan hệ \(q = f(F) \) khá phân tán, việc người ta quan tâm nhiều đến phương pháp xác định thông số \(A \).

Bảng 7.5. Hệ số chuyển tần suất \(\lambda_p \)

<table>
<thead>
<tr>
<th>Lưu vực</th>
<th>20%</th>
<th>10%</th>
<th>5%</th>
<th>2%</th>
<th>1%</th>
<th>0.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sông Đá</td>
<td>0,851</td>
<td>1,00</td>
<td>1,162</td>
<td>1,353</td>
<td>1,539</td>
<td>1,666</td>
</tr>
<tr>
<td>Sông Thao</td>
<td>0,851</td>
<td>1,00</td>
<td>1,210</td>
<td>1,428</td>
<td>1,636</td>
<td>1,840</td>
</tr>
<tr>
<td>Sông Lô, Gâm, sông Cầu, sông Thương</td>
<td>0,810</td>
<td>1,00</td>
<td>1,210</td>
<td>1,428</td>
<td>1,636</td>
<td>1,840</td>
</tr>
<tr>
<td>Sông vang Quảng Bình, Quảng Ninh</td>
<td>0,824</td>
<td>1,00</td>
<td>1,195</td>
<td>1,429</td>
<td>1,590</td>
<td>1,840</td>
</tr>
<tr>
<td>Sông Mây, sông Cả</td>
<td>0,838</td>
<td>1,00</td>
<td>1,171</td>
<td>1,391</td>
<td>1,590</td>
<td>1,750</td>
</tr>
</tbody>
</table>

Một số tác giả cho rằng \(A \) là mồ đun cơ bản của dòng chảy lơn nhất nên có thể xác định theo công thức (7.70):

\[A = qK a_{\text{max}} \]

Thay \(a_{\text{max}} \) bằng đường đồ mqua trung bình lơn nhất trong một thời đoạn có định nào đó, Xốkolôpki đề nghị thay \(a_{\text{max}} \) bằng đường đồ mua trung bình lơn nhất trong thời khoảng một giờ ta được:

\[A = K \varphi A_{60} \quad (7.72) \]

Rõ ràng cách tính \(A \) theo (7.72) chỉ phù hợp khi thời gian chảy tự trên sông độc khoảng 60 phút, còn thời gian chảy tự sông độc khác thì trị số \(A \) tính theo công thức trên có thể lớn hơn hoặc nhỏ hơn.

Một số tác giả thay mồ đun cơ bản \(A \) bằng mồ đun dinh lũ của một cặp diện tích có định \(F_c \) nào đó, diện tích đó được gọi là diện tích gốc. Ông Liên Xô diện tích gốc được chọn là 200 km², ở nước ta quy phạm QP.TL.C- 6-77 sử dụng diện tích 100km², do đó công thức trong quy phạm có dạng:

\[Q_{mp} = q_{100} \left(\frac{100}{F} \right)^n \lambda_p F^\delta \quad (7.73) \]

trong đó

\(Q_{mp} \) - lưu lượng dinh lũ ứng với tần suất thiết kế \((m^3/s)\)

\(q_{100} \) - mồ đun dinh lũ ứng với tần suất 10% quy toàn về diện tích lưu vực thông nhất 100 km² lấy trên bản đồ \(q_{100} \) 10% \((l/s/km²)\),

\(n \) - hệ số triệt giải mồ đun dinh lũ theo bản đồ phân khu.

\(\lambda_p \) - theo bảng (7.5).

Việc thay thế \(A \) bằng \(q_{F_c} \) có những ưu điểm sau:
Tham số q_c được xác định không phải dựa trên việc ngoại suy quan hệ $q = f(F)$ như tham số A mà dựa trên tài liệu thực do, do đó động tần cây hom, nó ít phụ thuộc vào chỉ số trí giảm n, việc vận động mức q_c có cơ số hom và đáng tần cây.

Do tính trí giảm mô đun định lũ ở lưu vực nhỏ không thể hiện rõ ràng nên trong quy phạm quy định công thức (7.73) chỉ sử dụng với diện tích lớn hơn 100km².

7.7. GIẢI PHƯƠNG TRÌNH VI PHẢN ĐONG CHÂY LỬ

Việc thành lập các phương trình vi phân thể hiện ban chất vật lý của dòng chảy chúng ta đã bàn đến tại chương 2. Trong phần này thứ xét bối toán trong lòng sông và giải bài toán do vi phân dòng chảy lử.

7.7.1. Giải phương trình vi phân trong lòng sông cơ sở

Chúng ta đã biết rằng trong lòng sông cơ sở với giải thiết là lưu vực bé có dạng đơn giản là hình chữ nhật ($B = \text{const}$) trên thực tế gặp ở các khe suối nhỏ, ở các đoạn đầu nguồn. Lực do phương trình vi phần có dạng:

$$v \frac{\partial \omega}{\partial x} + \frac{\partial \omega}{\partial t} = q'(t). \quad (7.74)$$

Trong tình toán thủy vân, để phục vụ trực tiếp cho các mục đích nghiên cứu khác nhau người ta thường giải phương trình này rồi áp dụng cho các điều kiện khác nhau để đưa về trường hợp ứng dụng.

Để giải phương trình này ta dùng phương pháp linh liến đặc trưng dựa vào một hệ phương trình tuyến tính dạng:

$$\frac{dx}{v} = \frac{dt}{1} = \frac{d\omega}{q'(t)}. \quad (7.75)$$

Từ đây ta có:

$$dx = vdt \quad \text{suy ra} \quad x = vt + C_1$$

$$C_1 = x - vt \quad (7.76)$$

$$d\omega = q'(t)dt \quad \omega = \int_0^t q'(t)dt + C_2 \quad (7.77)$$

Thay bằng vào đầu thời kỳ lũ ở thời điểm $t = 0$ thì dinh tích thời điểm cuối có thể coi là bằng 0 trên toàn bộ diện biên lồng sông (tất nhiên ở đây ta loại trừ di nguồn cung cấp nước do sạch ngầm). Như vậy có nghĩa là $t = 0$ thì $\omega = 0$. Ta lấy điều kiện này làm điều kiện ban đầu.

Và cũng lý luận tương tự nếu lấy điểm đầu hệ toa do trung với đường phân thủy thì vao bất kỳ thời điểm nào chẳng nưa với $x = 0$ thì $\omega = 0$. Điều kiện này là điều kiện biên của bài toán. Vậy điều kiện ban đầu và điều kiện biên như sau:

Khi $t = 0$ thì $\omega = 0$,

$x = 0$ thì $\omega = 0$.

Với điều kiện ban đầu (hạn chế thời gian) ta có:

$$x = vt + C_1, \quad \text{khi} \ t = 0 \quad x = C_1$$

$$t = 0 \Rightarrow \omega = 0 \text{ do đó } C_2 = 0.$$
\[
\omega = \int_0^t q'(t) dt .
\] (7.78)

Từ điều kiện biên (hạn chế không gian) ta có:
Khi \(x = 0\)
\[
\begin{align*}
C_1 &= -vt \Rightarrow t = -\frac{C_1}{v} \\
C_2 &= -\int_0^t q'(t) dt.
\end{align*}
\]
Lỗi giải được một hàm có dạng \(\phi(C_1C_2) = 0\).
Nhu thế có nghĩa là:
\[
C_2 = -\int_0^t q'(t) dt.
\text{ (thay } t = -\frac{C_1}{v})
\]
Mật khác ta có:
\[
C_2 = \omega - \int_0^t q'(t) dt.
\]
\[
\omega - \int_0^t q'(t) dt = -\int_0^t q'(t) dt
\]
Ta có:
\[
C_1 = \frac{x - vt}{v}, \quad \text{Gọi } x = t_x
\]
\[
\frac{C_1}{v} - t_x - t \Rightarrow \left(-\frac{C_1}{v} = t - t_x \right).
\]
Phương trình có dạng:
\[
\omega - \int_0^t q'(t) dt = -\int_0^t q'(t) dt
\]
\[
\omega = \int_0^t q'(t) dt - \int_0^{t_x} q'(t) dt
\]
\[
\omega = \int_{t_x}^t q'(t) dt.
\]
Đây chính là lời giải cho phương trình (7.74 và 7.75) ở trên.

7.7.2. Tìm módun và lưu lượng lớn nhất trên lưu vực cơ sở

Ở phần trên, ta thấy 2 phương trình áp dụng để giải phương trình vi phân. Chừng ta cần quan tâm đến việc áp dụng các phương trình trong trường hợp nào? Lời giải thứ nhất (7.79) ta thấy nó bơi ràng bước bởi điều kiện hạn chế không gian cho nên chỉ áp dụng được trên một khu vực lòng sông \(X_0\) nhất định nào đó kẻ từ nguồn. Đoạn dưới khoảng \(X_0\) diện tích thiết diệt uột nhất thiết phải được xác định theo công thức (7.78).
để xác định đại lượng X_0 ta giải đồng bộ 2 phương trình (7.78), (7.80) để khử ω. Đâu báng của phương trình chỉ xảy ra khi:

$$\int_{t_s}^{t} q'(t) dt = \int_{0}^{t} q'(t) dt$$

tức là chỉ xảy ra khi và chỉ khi $t - t_s = 0$ hay $t - \frac{X_0}{v} = 0$, $X_0 = v.t$ (7.81)

X_0 gọi là quảng đường chảy truyền của sóng lũ.

Nếu vậy trên một lưu vực trong khi xệt bất cứ một đoạn không chế nào mà sóng lũ chưa đạt tới thì dùng công thức (7.78) còn ở phần lưu vực $X < X_0$ thì áp dụng công thức (7.80) cho mọi thời gian vượt quá kì chảy truyền của sóng lũ.

Để dàng nhận thấy rằng tích phân (7.78) thể hiện tổng nhập lưu từ suôn độc trên trong một đơn vị lồng sóng trong thời gian kể từ khi bắt đầu tạo dòng. Trên các khu vực chưa có sóng lũ lưu lượng theo chiều dọc sóng không đòi hỏi nên một mét lồng sóng tích dựa một thế tích:

$$\omega_1 = \int_{0}^{t} q'(t) dt.$$

Tích phân (7.80) là tổng nhập lưu của phần nhập lưu suôn $q'(t)$ trong thời gian từ $t - \frac{X}{v}$ đến t (có nghĩa là từ trước thời gian chảy truyền sóng lũ theo sóng). Đối với lồng sóng có độ dài là L, ta có:

$$t_p = \frac{L}{v}$$

Ta xét máy trường hợp sau:

1. $t_p > T_0$ - Đang dòng chảy chậm (ngưng trệ)

$$\omega = \int_{0}^{t} q'(t) dt$$

$$\omega_{\text{max}} = \int_{0}^{t} q'(t) dt = y_{\text{max}} B$$

$$Q_{\text{max}} = \omega_{\text{max}} B = y_{\text{max}} B v$$

$$q_{\text{max}} = \frac{Q_{\text{max}}}{F} = \frac{y_{\text{max}} B v}{LB} = \frac{v y_{\text{max}}}{L}$$

$$Q_{\text{max}} = \frac{y_{\text{max}}}{t_p}$$

(7.83)

2. $t_p < T_0$ - Đang dòng chảy nhanh (phát triển)

$$\omega = \int_{t-t_s}^{t} q'(t) dt.$$

Nếu đã lý luận trên tôi trạng không chế ta có $t_s = t_p$

$$\omega = \int_{t-t_s}^{t} q'(t) dt.$$

vậy:
\[
\omega_{\text{max}} = \int_{t_k}^{t_p} q'(t) \, dt
\]

\(t_k \) - thời điểm giới hạn bắt đầu xuất hiện giá trị cực đại. Khi đó:

\[
\omega_{\text{max}} = y_{t_p} B
\]

\[
Q_{\text{max}} = \omega_{\text{max}} v = y_{t_p} B V
\]

\[
q_m = \frac{y_{t_p}}{t_p}
\]

(7.84)

Các công thức (7.83 và 7.84) dùng để tính toán modulus dòng chảy lớn nhất trên các lưu vực bề.

7.7.3. Công thức khái quát dòng chảy lớn nhất trên lưu vực cơ sở

Ta thấy rằng nếu:

\(t_p > T_0 \) thì \(q_m = \frac{y_m}{t_p} \) và \(t_p < T_0 \) thì \(q_m = \frac{y_{t_p}}{t_p} \).

Từ công thức dòng chảy nhanh ta thấy rằng ở đây không thể hiện tổng toàn bộ dòng chảy mà chỉ thể hiện một bộ phận nào đó thu được trong khoảng thời gian tp. Đối với việc xác định \(y_m, y_{t_p} \) thì điều ta quan tâm hơn cả là khả năng thu được một cách đơn giản nhất \(y_{t_p} \) chứ không phải là tính chất hấp thụ lưu và tiến hành sự phân bố giản độ hấp thụ từ tờ đi móc. Để thuận tiện người ta chia thành hai pha của giản độ sao cho có thể so sánh được chính xác các đặc trưng của nó. Sau đó dùng giản do:

![Diagram](Hình 7.9. Mô hình dòng chảy cực đại)

![Diagram](Hình 7.10. Sơ đồ khái quát mô đun lưu lượng cực đại)
Kết quả ta thu được giới đoạn điều chỉnh dòng chảy suôn đéc theo sự phân bố cực đại (H.7.10). Như vậy có thể diễn toán đường cong trên dưới dạng:

\[\frac{q(t)}{q(m)} = \left(\frac{t}{T_0} \right)^n \]

\[\frac{t}{T_0} = 0 \quad \Rightarrow \quad \frac{q(t)}{q(m)} = 1; \quad \frac{q(t)}{q(m)} = 0 \quad \Rightarrow \quad \left(\frac{t}{T_0} \right) = 1 \]

\(\left(\frac{t}{T_0} \right)^n \) đặc trưng cho hình dạng của đường cong.

Giới hạn trên của n = 1.

Vậy:

\[q'(t) = q^n \left[1 - \left(\frac{t}{T_0} \right)^n \right] \]

\[y_{\phi} = \int_0^1 q'(t) dt = q^n \int_0^1 \left[1 - \left(\frac{t}{T_0} \right)^n \right] dt \]

\[q^n \cdot T_0 \left[1 - \frac{1}{n+1} \left(\frac{t}{T_0} \right)^n \right] \]

\[y_{\phi} = \frac{n}{n+1} q^n \cdot T_0 = \frac{n}{n+1} \] \((7.85) \)

\(\frac{q(t)}{q_m} \)

Giới đoạn điều chỉnh mục đầu

theo max

\(n \approx 1 \)

\(n=1 \)

Kí hiệu

\[\frac{y_{\phi}}{y_m} = \varphi \] \(\Rightarrow \) Hệ số lợp dòng chảy hữu hiệu.

\[\varphi = \frac{y_{\phi}}{y_m} = \varphi y_m \]

Do đó từ chỗ có 2 công thức (7.83, 7.84), ta có:

\[q_m = \frac{y_m}{t_p} \varphi \] \((7.86) \)

\[\varphi = \frac{y_{\phi}}{y_m} = t_p T_0^n \left[1 - \frac{1}{n+1} \left(\frac{t_p}{T_0} \right)^n \right] (n+1) \] \((7.87) \)

Đối với dòng chảy nhanh thì \(\varphi = 1 \).

\[\frac{1.0}{t_p/T_0} \]

\[Hình 7.11. Các biến của giới đoạn phụ thuộc vào chỉ số n \]

\[Hình 7.12. Quan hệ \varphi = f (t_p/T_0) \]
\[\frac{t_p}{T_0} = 0 \quad \varphi = 0 \]
\[\frac{t_p}{T_0} = 1 \quad \varphi = 1 \]

Chi số n tương đối ổn định đối với một lãnh thổ rộng lớn. Vùng thảo nguyên lấy \(n = 1 \), còn với vùng núi \(n = 0.5 \).

7.7.4. Giải phương trình vi phân cho hệ thống sông ngòi

Để tránh phân tích chi tiết đến cấu tạo của mạng lưới sông ngòi, để chảy nhanh chậm và sự tập trung nước, ta sử dụng hệ thống đường dòng mức chảy truyền với \(v = \text{const} \) cho toàn bộ hệ thống lưu vực. Từ đó ta thu được một lời giải gần đúng. Phương trình nhập lưu gạn đúng việt dương dạng vi phân sẽ là:

\[q'(t)n = n.q'(t) = \alpha B_x.q'(t) \]

\[n = \frac{B_x}{2l} = \alpha B_x \]

\(B_x \) độ rộng của lưu vực theo đường dòng mức chảy truyền trong lòng sông; \(l \) - độ dài suôn đốc; \(\alpha \) - mật độ mạng lưới sông. Vây:

\[q'(t)n = n.q'(t) = \alpha B_x.q'(t). \]

Viết phương trình vi phân đối dạng (7.89) ta chỉ có thể tính được giá trị cực đại của lưu lượng. Toàn bộ đường quá trình cần phải chuyển hàm \(B_x \) về một hàm thời gian như sau:

\[B_x = B_m \left[1 - \left(\frac{x}{L} \right)^n \right] \]

\[\frac{x}{v} = t_x, \quad \frac{L}{v} = t_p. \]

\[B_x = B(t) = B_m \left[1 - \left(\frac{L}{l} \right)^m \right] \]

\[v \frac{\partial \omega}{\partial x} + \frac{\partial \omega}{\partial t} = \alpha B(t)q'(t). \]

\[(7.90) \]

Hình 7.13. So đồ chuyển phân bố toa độ không gian
Ta giải phương trình (7.90) bằng phương pháp linh biến đặc trưng:

\[
\frac{dx}{v} = \frac{dt}{1} = \frac{d\omega}{\alpha B(t)q'(t)}.
\]

Với các điều kiện ban đầu và điều kiện biên như sau:

Khi \(x = 0 \quad \omega = 0 \) (ban đầu)
\(t = 0 \quad \omega = 0 \). (biến)

a. Khi \(t = 0 \)
\[
C_1 = x, \quad C_2 = 0 \Rightarrow \omega = \alpha \int_0^t B(t)q'(t)dt.
\]

(7.91)

b. Voi \(x = 0 \quad C_1 = -vt \)
\[
\Rightarrow t = -\frac{C_1}{v}, \quad C_2 = -\alpha \int_0^t B(t)q'(t)dt.
\]

Lời giải chung có dạng \(\phi(C_1, C_2) = 0 \), có nghĩa là:

\[
C_2 = -\alpha \int_0^t B(t)q'(t)dt = -\alpha \int_0^{t_0} B(t)q'(t)dt.
\]

và mặt khác ta có:

\[
C_2 = \omega - \alpha \int_0^t B(t)q'(t)dt = -\alpha \int_0^{t_0} B(t)q'(t)dt.
\]

\[
\omega = \alpha \int_0^t B(t)q'(t)dt
\]

(7.92)

Trường hợp 1.

Đối với dạng dòng chảy nhanh (phát triển) \(tp < T_0 \)

\[
\omega = \alpha \int_0^t B(t)q'(t)dt
\]

\(Q_{\text{max}} \) bắt đầu từ \(t_0 \) giới hạn đó,

\[
\omega_{n} = \alpha \int_{t_0}^{t} B(t)q'(t)dt
\]

\[
\omega_{n} = \alpha \int_{t_0}^{t} B(t)q'(t)dt
\]

\[
= \alpha \int_{t_0}^{t} B(t)q'(t)dt - \int_{t_0}^{t} B(t)q'(t)dt + \int_{t_0}^{t} B(t)q'(t)dt
\]

\[
= \alpha \int_{t_0}^{t} B(t)q'(t)dt
\]

Nếu áp dụng cho lưu vực được mô hình hoá thành hình chữ nhật thì:

\[
\omega_{m} = \alpha B_{tb} \int_0^t q'(t)dt = B_{tb} y_{tp}.
\]

\(B_{tb} \) là độ rộng trung bình lưu vực.

Gọi \(\frac{\omega_{n}}{\omega_{m}} = K \) \(\Leftrightarrow \) Hệ số địa lý thủy văn thứ nhất.
\[
\begin{align*}
\omega_m &= \omega'_m k = k_B \cdot \gamma_B. \\
Q_m &= \omega'_m v = k_B \cdot \gamma_B \cdot v \\
q_m &= \frac{Q_m}{B_m L} = K \cdot \frac{\gamma_B}{t_p} \\
q_m &= K \cdot \frac{\gamma_B}{t_p}. \\
\end{align*}
\]

(7.93)

Trong công thức (7.93) nếu Lưu vực có hình chữ nhật thì \(K_1 = 1. \)

Công thức này viết cho trường hợp dòng lưu trữ sự độc không triệt giảm theo diện tích hoặc là nó chỉ đối đối với những Lưu vực bé, cho nên với các Lưu vực lớn không áp dụng được, mà nếu sử dụng cần đưa vào công thức hệ số điện tích \(K_F. \) Vây

\[
q_m = \frac{\gamma_B}{t_p} K_F K_B. \\
\]

(7.94)

Trường hợp 2: Đối với trường hợp dòng chảy chậm (ngừng trợ) \(t_f > T_0 \)

\[
\omega = \alpha \int_0^t B(t) q'(t) dt. \quad \Rightarrow \omega_m = \text{xuất hiện} \quad \omega \text{ cuối giai đoạn lưu trữ} (t = T_0) \\
\omega_m = \alpha \int_0^{T_0} B(t) q'(t) dt. \\
\omega'_m = \gamma_B \int_0^{T_0} q'(t) dt. = B'_B \cdot \gamma_B \\
\frac{\omega_m}{\omega'_m} = K_2 \Rightarrow \text{trường tự như} K_1 \text{ những áp dụng trong giới hạn điện tích hiệu quả.}
\]

Do vậy

\[
\begin{align*}
\omega_m &= \omega'_m K_2 = K_B \cdot \gamma_B \\
Q_m &= \omega'_m v = K_B \cdot \gamma_B \cdot v \\
q_m &= \frac{Q_m}{B_m L} = K_2 \cdot \frac{\gamma_B}{t_p} \\
K_2 &= \frac{B'_B}{B_B} \geq 1 \quad \text{hệ số điện tích hiệu quả.}
\end{align*}
\]

Do vậy:

\[
q_m = \frac{\gamma_B}{t_p} K_2. \\
\]

(7.95)

trong đó:

\[
K_2 = K'K_B \\
K_2 - \text{hệ số địa lý thủy văn thứ hai.}
\]

Nếu tính đến sự tiếp giảm dòng chảy theo diện tích thì cần đưa thêm \(K_F \) vào công thức:

\[
q_m = \frac{\gamma_B}{t_p} K_2 K_F \\
\]

(7.96)

Các công thức dụng (7.94), (7.96) là những công thức do A.N. Bebanhi thiết lập.
7.7.5. Công thức đánh tổng quát của dòng chảy lớn nhất theo hệ thống lòng sông

\[
\frac{y_{t_p}}{y_m} = \varphi = \frac{t_p}{\alpha \int_0^\infty q'(t) \, dt} = \frac{\int_0^\infty q'(t) \, dt}{\alpha \int_0^\infty q'(t) \, dt} = \frac{y_p}{y_m}
\]

\[q_m = \frac{y_m}{t_p} K_f \varphi K_p
\]

\[K_f \text{ có thể là } K_1, K_2 \text{ phụ thuộc vào tỷ số } \frac{t_p}{T_0}.
\]

7.7.6. Khảo sát hệ số địa lý thủy văn

1. Hệ số địa lý thủy văn thuộc nhất

\[K_i = \frac{\omega_i}{\omega m} = \frac{\alpha \int_0^\infty q'(t)B(t) \, dt}{\int_0^\infty q'(t) \, dt} = \frac{\int_0^\infty q'(t)B(t) \, dt}{B_m \int_0^\infty q'(t) \, dt}
\]

Xét từ số:

\[q'(t) = q'_m \left[1 - \left(\frac{t}{T_p} \right)^a \right]
\]

\[B(t) = B_m \left[1 - \left(\frac{t}{T_p} \right)^a \right]
\]

\[\int_0^\infty q'(t)B(t) \, dt = q'_m B_m \left[\frac{t}{T_p} \right]^a \left[\frac{1}{1 + \frac{t}{T_p}} \right] \left[\frac{1}{1 + \frac{t}{T_p}} \right] \left[\frac{1}{1 + \frac{t}{T_p}} \right]
\]

\[
\int_0^\infty q'(t)B(t) \, dt = q'_m B_m t_p \left[1 - \frac{1}{m+1} + \frac{L}{n+m+1} \left(\frac{t_p}{T_p} \right)^a - \frac{1}{n+1} \left(\frac{t_p}{T_p} \right)^a \right]
\]

\[
= q'_m B_m t_p \left[1 - \frac{m}{m+1} + \frac{n}{n+m+1} \left(\frac{t_p}{T_p} \right)^a \right]
\]

Xét mẫu số:

\[
\int_0^\infty q'(t) \, dt = q'_m \int_0^\infty \left[1 - \left(\frac{t}{T_p} \right)^a \right] \, dt
\]

\[
= q'_m t_p \left[1 - \frac{1}{n+1} \left(\frac{t_p}{T_p} \right)^a \right]
\]

\[B_n = \frac{1}{t_p} \int_0^\infty B(t) \, dt = \frac{1}{t_p} B_m \int_0^\infty \left[1 - \left(\frac{t}{t_p} \right)^a \right] \, dt = \frac{m}{m+1} B_m
\]

Do vậy:
\[K_1 = \frac{m + n + 1}{m + 1 - \frac{n}{m + n + 1} \left(\frac{t_p}{T_0} \right)^n} \]

\[= \frac{m + 1}{m} \left[1 - \frac{n}{m + n + 1} \left(\frac{t_p}{T_0} \right)^n \right] \]

\[= \frac{m + 1}{m} \left[1 - \frac{n}{m + n + 1} \left(\frac{t_p}{T_0} \right)^n \right] \cdot \frac{1}{1 - \frac{1}{n + 1} \left(\frac{t_p}{T_0} \right)^n}. \]

(7.99)

Khi \(\frac{t_p}{T_0} \to 0 \) thì \(K_1 \to 0 \) giới hạn chặn dưới. Giới hạn chặn dưới xây ra khi \(t_p = T_0 \) hay là \(\frac{t_p}{T_0} = 1 \). Giả

trị \(K_1 \) khi dòng phụ thuộc vào \(m, n \).

Nếu \(m = 10; n = 0,33 \) thì \(K_1 = 1,43 \).

2. Hệ số giả lý thuyết văn thứ 2

\[K_z = \frac{e_{cm} \omega^{m} m_{s}}{e \omega^{m} t_{p}} k = \frac{\int q'(t)B(t)dt B_{B}^{m}}{\int q'(t)B(t)dt B_{B}^{m}}. \]

Xét từ số:

\[\int q'(t)B(t)dt = q'_{m} B_{m}^{n} \int_{0}^{\tau_{0}} \left(1 - \left(\frac{t}{T_0} \right) \right)^{n-1} \left(1 - \left(\frac{t}{T_0} \right)^{n-1} \right) dt \]

\[= q'_{m} B_{m}^{n} \left[T_0 - \frac{1}{m} T_{0}^{m+1} - \frac{m+1}{m+1} t_{p}^{m} + \frac{1}{m+1} T_{0}^{m+1} \right] \]

\[= q'_{m} B_{m}^{n} \left[T_0 - \frac{1}{m+1} T_{0}^{m+1} + \frac{1}{m+1} T_{0}^{m+1} \right] \]

\[= q'_{m} B_{m}^{n} \left[T_0 - \frac{1}{m+1} T_{0}^{m+1} \right] \]

\[= q'_{m} B_{m}^{n} T_0 \left(\frac{n}{n+1} - \frac{n}{n+1} \left(\frac{T_0}{t_{p}} \right)^{m} \right) \]

Mẫu số:

\[B_{B}^{m} = \frac{m}{m+1} \]

\[= q'_{m} B_{m}^{n} T_0 \left(\frac{n}{n+1} - \frac{n}{n+1} \left(\frac{T_0}{t_{p}} \right)^{m} \right) \]

\[= q'_{m} B_{m}^{n} T_0 \left(\frac{n}{n+1} - \frac{n}{n+1} \left(\frac{T_0}{t_{p}} \right)^{m} \right) \]

\[= \frac{m}{m+1} \cdot \frac{q'_{m} T_0}{t_{p}} \cdot \frac{n}{n+1} \]

113
\[
\frac{(n+1)(m+1)}{n+1} \left[\frac{n}{m+1(n+m+1)} \frac{T_0^m}{t_p^m} \right] = \frac{m+1}{m} \left[1 - \frac{n+1}{(m+1)(n+m+1)} \left(\frac{T_s}{t_p} \right)^m \right]
\]

\(K_1, K_2 \) là hàm của: \(K = f \left(\frac{t_p}{T_0} : n, m \right) \)

\[\left(\frac{t_p}{T_0} \right)^m \Rightarrow 0, \quad K_2 = \frac{m+1}{m} \] đấy là giới hạn trên

\[\frac{T_0}{t_p} = 1 \quad \Rightarrow \quad \text{giới hạn phía dưới phụ thuộc vào} \ m, n. \]

\[\frac{t_p}{T_0} = 1, \text{ lược độ } K_1 = K_2 \]

\[Hinh \ 7.14. \ Quan \ he \ K = f \left(\frac{t_p}{T_0} \right) \]

Các hệ số \(K_1 \) và \(K_2 \) là hệ số đa tỷ tổng hợp phần analyc các giai đoạn của dòng chảy trong lưu vực sông ngòi (lớn hoặc bé).

7.8. TỔNG LƯỢNG LƯ và QUÁ TRÌNH LƯ

Khi tính toán lượng từ nước trong các hồ chứa, tính toán thiết kế công trình thoát lũ, phân lũ, giao thòng...không những cần biết lưu lượng định lũ mà phải nghiên cứu cả quá trình nước lũ.

Nhưng đặc trưng cơ bản của quá trình lũ trong việc tính toán lượng từ của kho nước là lưu lượng định lũ \(Q_0 \), tổng lượng lũ \(W \) và thời gian kéo dài lũ \(T \).

Đạng đường quá trình lũ phụ thuộc vào rất nhiều yếu tố: lượng mưa lũ, lượng độ mưa lũ, thời gian và sự thay đổi theo thời gian và không gian của mưa lũ, diện tích, chiều dài lưu vực, độ dốc lưu vực, hình dạng lưu vực và mặt độ lưu lượng... Hình dạng tổng hợp của các yếu tố này tạo nên đường đường quá trình lũ mang nhiều tính chất ngẫu nhiên. Do đó có quan điểm coi quá trình lũ là ngẫu nhiên.

Sống đối với một lưu vực xác định thì ảnh hưởng tới dạng đường quá trình lũ chủ yếu là mưa. Những trận mưa giống kết hợp với địa hình, những trận mưa có lượng lớn nhưng thời gian ngắn thường chỉ gây lũ ở lưu vực nhỏ. Đối với lưu vực nhỏ, độ dốc lớn sông và độ dốc lưu vực lớn, thời gian tập trung nước nhanh, lũ lên xuống nhanh. Ngược lại, ở những lưu vực sông lớn, phá có những trận mưa lớn, thời gian mưa dài, mưa trên diện tích rộng mới sinh lũ; đường quá trình lũ thường kéo dài nhiều ngày, lũ lên
chậm, xướng chậm. Những lưu vực rất lớn do sông chảy qua nhiều khu vực khí hậu khác nhau, quá trình lũ lả tạo hình của nhiều lưu vực xuất hiện lũ nện thường có dạng lũ xướng rã từ, lưu của những lưu vực sông nhỏ chỉ gây ra những gọng sông trên dòng lũ lôn. Do vậy đối với một lưu vực, xác định dạng đường quá trình phụ thuộc vào đặc tính của mùa, với những trận lũ lớn (tù thường quan tâm đến những trận lũ lớn), nếu không đối mực tập trung và tầm mực ít thay đổi thì đường quá trình lưu ngày càng ít thay đổi. Do đó, cũng có quan điểm cho rằng có thể chọn một con lưu diễn hình cho một lưu vực. Hai quan điểm trên đều được áp dụng để xác định đường quá trình nước lũ.

Tuy theo số lượng đỉnh lưu trong một trận lũ có thể phân thành lưu một đỉnh hoặc lưu nhiều đỉnh.Tuy theo quan hệ giữa T_B và τ có thể phân quá trình lũ thành đơn vị, lưu kịp và lưu hổp.

Lưu đơn vị được hình thành trong điều kiện thời gian cấp nước T_B nhỏ hơn thời gian chảy tụ τ rất nhiều. Theo lý thuyết đường chảy cũng thời gian, nếu không xét đến sự điều tiết dòng chảy của lòng sông thì thời gian kéo dài lưu T sẽ bằng:

$$ T = T_B + \tau $$

Vì T_B rất nhỏ so với τ nên ta có thể lấy T_B làm một đơn vị thời khoảng. Ta có $T = 1 + \tau$ gắn đúng ta lấy $T \approx \tau$. Ta hãy hình dung một lưu vực được chia thành nhiều đường chảy cũng thời gian (H. 7.15) với lượng ma quá thâm h của một đơn vị thời gian, theo lý thuyết đường chảy tính đường chảy ta có:

$$ Q_1 = f_1 h $$
$$ Q_2 = f_2 h $$
$$ \cdots $$
$$ Q_i = f_i h $$
$$ \cdots $$

Hình 7.15. Sử dụng lưu vực với đường cong đúng chảy đúng thời

Thời gian duy trì lưu $T = \tau$ bằng 8 đơn vị thời gian. Từ công thức (8.1) ta rút ra:

$$ \sum Q_i = h \frac{f_i}{F} = \frac{f_i}{F} $$

(7.101)

trong đó: $\sum Q$ và hF biểu thị tổng lượng dòng chảy lũ. Phân tích như vậy ta thấy quá trình lũ do mực lưu thời gian ngắn (so với τ) có thời gian duy trì lũ gần như nhau $(T = \tau)$ và từng độ lượng đối Q_i của đường quá trình lũ không thay đổi. Do là đặc tính cơ bản của lưu đơn vị. Lưu đơn vị có thể xây ra ở lưu vực nhỏ chủ yếu quyết định bởi quan hệ đường thời gian cấp nước T_B và thời gian chảy tụ τ.

Trong trường hợp $T_B >> \tau$, lưu lượng trung bình của khoảng thời gian không hình thành bởi lượng mực quá thâm của từng thời khoảng với toàn bộ diện tích chảy tự:

$$ Q_1 = h_1 F $$
$$ Q_2 = h_2 F $$
$$ Q_i = h_3 F $$
$$ \cdots $$
$Q = h_i F$.

Quá trình lũ hoà hoàn toàn phụ thuộc quá trình mua, những Trần mưa kéo dài, nhiều đỉnh sê hình thành lũ nhiều đỉnh. Trương hợp này ta có thể gọi là lũ phức hợp; khác qua trình lũ đơn vị, đường qua trình lũ phức hợp có đặc điểm là thời gian kéo dài lũ bằng thời gian cấp nước $T = T_1$ và quá trình lũ tương tự quá trình mua song chấm một thời gian chảy truyền τ.

Do khoảng thời gian ngâm mua giữa các Trần lũ dải khác nhau, lũ phức hợp có thể là do các lũ đơn vị và lũ hồn hợp hợp thành hoặc cũng có thể hấp nhập nhau ràng của theo quá trình mua. Cùng như lũ đơn vị, quá trình lũ phức hợp cũng có thể xảy ra ở các lưu vực lớn lắm lưu vực nhỏ, nhưng đối với những lưu vực lớn thì quá trình lũ phức hợp chỉ xảy ra khi mua sinh lũ kéo dài nhiều ngày đêm.

Lũ xây ra trong trường hợp khi $\tau = T_1$ gọi là lũ hồn hợp.

Qua phân tích trên đây ta thấy đặc điểm của mua và lưu vực ảnh hưởng rất lớn đến dòng chảy lũ nhất và quá trình dòng chảy, hai lưu vực có lượng mua và quá trình mua giống nhau song do thời gian chảy tự khác nhau nên vừa chảy ra những đoạn Lưu khác nhau; khi chọn công thức tính toán lũ (trưởng hợp thiêui tài liệu) cũng nên dựa vào đặc điểm này vì nếu là lũ phức hợp, quá trình lũ phức thuộc chặt chẽ vào quá trình mua, định lũ hình thành chỉ do một phần lượng mua sinh ra mà không phải toàn bộ lượng mua, do đó việc áp dụng công thức thế thì với α Trần lũ không hợp lý.

7.8.1. Tổng lượng lũ và phương pháp xác định

Tổng lượng lũ là lượng dòng chảy sinh ra trong một Trần lũ. Lượng lũ là dòng chảy lũ trong một thời khoảng T nào đó (ký hiệu W_1) là diện tích bao bì dòng quá trình lũ với trục hoành từ thời điểm t_1 đến t_2. Khi tính lũ người ta thường lấy W_1 lớn nhất trong khoảng T (H.7.16).

![Hình 7.16](image_url)

Tựu theo nhiệm vụ tính toàn thủy văn của đối tượng phục vụ mà người ta có thể tính tổng lượng lũ hoặc lượng lũ sinh ra trong các thời khoảng 1, 3, 5, 7... 15, 30 ngày.

Do quá trình lũ có thể coi là hiện tượng ngẫu nhiên nên lượng lũ của thời khoảng T nào đó cũng có thể coi là đặc trưng không thể dự đoán quá trình lũ. Ngoại ra, việc tính toán tổng lượng lũ còn sử dụng để tính hệ số dòng chảy Trần lũ.

Tính toán tổng lượng lũ hoặc lượng lũ các thời đoạn từ tài liệu lưu lượng thực do theo công thức:
trong đó Q_i - lưu lượng ở thời điểm thứ i; t_{0i}, t_{ni} - thời điểm bắt đầu và kết thúc trên lưu hoặc bắt đầu và kết thúc thời khoảng.

Ô lưu vực lớn, quá trình lũ kéo dài nhiều ngày, tính tổng lưu lượng lưu và lưu lượng các khoảng có thể theo bảng lưu lượng bình quân ngày:

$$W = 86400 \sum_{i=0}^{n} Q_i$$ \hspace{1cm} (7.103)

0 và n- ngày bắt đầu và kết thúc trên lưu; Q_i - lưu lượng bình quân ngày.

Để tính hệ số dòng chảy trên lưu và thu phóng đường quá trình lưu thành đường qua trình lưu thiết kế, người ta thường phải cắt nước ngầm rời mỗi tính tổng lưu lượng sinh ra, sau khi thu phóng xong mới công thêm phần nước ngầm. Song trong trường hợp đơn giản thì khi thu phóng đường quá trình lưu người ta không cắt nước ngầm.

Trong trường hợp tiêu tài liệu thực tế, người ta thường sử dụng quan hệ định lượng và quan hệ lưu lượng lưu giữa các thời khoảng của lưu vực tương tự. Tại những lưu vực nhỏ, khả năng điều tiết của lưu vực kém, thời gian tập trung dòng chảy ngắn như $\tau << T_h$, quá trình lưu phân anarch khá đồng bộ với quá trình mưa. Khi diễn tích lưu vực tăng lên, khả năng điều tiết của lưu vực tăng lên làm cho đường quá trình điều hoà hơn, lúc đó các yếu tố mất đến mà chủ yếu là các yếu tố có tác dụng điều tiết của lưu vực sẽ đóng vai trò chính làm cho đường quá trình lưu các tránh lũ khác nhau có xu thê tương tự nhau (xu thê do phân anh đặc điểm của lưu vực), xu thê tương tự làm cho định lượng có quan hệ thống kế nhất định. Quan phân tích hơn 30 lưu vực có diện tích 100 km2 đến 137400 km2 ở miền Bắc nước ta cho thấy sự tăng dần của lưu lượng lưu W_T theo thời khoảng T của từng tránh lũ một cách số đao động khác nhau. Song xét từ số bình quân nhiều năm \bar{W}_T hay ứng với một tan suất nào đó W_0 đều thể hiện tính quy luật rõ ràng và chất chê. Quan hệ định lượng và quan hệ lưu lượng lưu giữa các khoảng thường có dạng parabô. Quan hệ lưu lượng lưu thời khoảng thường có định gay $\bar{W}_T = \alpha T$ ngày (một số ít lưu vực điểm gay này không rõ nét) nên ta có hai công thức tính tổng lưu lượng lưu các thời khoảng như sau:

$$W_T = W_0 T^m \hspace{1cm} 1 \text{ ngày} < T \leq 3 \text{ ngày}$$

$$W_T = W_0 3^m \left(\frac{T}{3} \right)^m \hspace{1cm} T > 3 \text{ ngày}$$ \hspace{1cm} (7.104)

trong đó: W_1 - lưu lượng từ một ngày lớn nhất; \hspace{1cm} W_T - lưu lượng T ngày lớn nhất.

(Khi xây dựng công thức tác giả lấy T lớn nhất là 30 ngày); m_1, m_2 thay đổi theo từng lưu vực không thay đổi theo tan suất.

7.8.2. Phương pháp xác định quá trình lưu

Tuy theo mục đích sử dụng và tính hình tài liệu, người ta đưa ra nhiều phương pháp xác định quá trình lưu. Xác định quá trình lưu phục vụ cho dự báo nguy cơ thì đường quá trình lưu được xác định phải gần với lưu thực xảy ra.

Xác định quá trình lưu phục vụ cho thiết kế các công trình thì đường quá trình lưu cần mang tính chất khái quát cao để thỏa mãn yêu cầu về thiết kế. Đường quá trình lưu có thể xác định trực tiếp từ tài liệu đồ lưu lượng thực đo nhưng cũng có thể xác định gián tiếp qua lượng mưa.
1. Phương pháp đại biểu theo mẫu

Phương pháp này thường sử dụng để tính toán quá trình lũ thiết kế trong trường hợp chuỗi do đặc dụng, đây là phương pháp linh hoạt nhất dùng cho cả một định lượng nhiều dinh. Từ chuỗi quá trình lưu lượng lũ thực do, ta chọn một quá trình lũ bất lợi nhất đối với công trình gọi là quá trình lũ đại biểu, sau đó sửa lại đường quá trình cho dinh hoắc lượng lũ phù hợp với tiêu chuẩn thiết kế.

2. Phương pháp mô hình hình học

Những sông vừa và nhỏ sông lũ thường có dạng một định cần đổi, quá trình lũ thường được khái quát bằng một mô hình hình học.

D.L. Xốkôlypxki kiến nghị sơ đồ hoà quá trình lũ một định theo phương trình đường parabôn:
- Đối với mái len:
 \[Q_t = Q_m \left(\frac{t}{t_f} \right)^n \] (7.105)
- Đối với mái xuống:
 \[Q_t = Q_m \left(\frac{t - t_s}{t_f - t_s} \right)^n \] (7.106)
trong đó: \(Q_t \) - lưu lượng thời điểm \(t \). Đối với mái len \(t \) kể từ lúc bắt đầu lên; đối với mái xuống \(t \) kể từ đỉnh lũ;
\(Q_m \) - lưu lượng đỉnh lũ tính theo các công thức ở các mục trên
Thời gian lũ lên \(t_f \) lấy bằng thời gian chạy tụ của đỉnh lũ \(\tau \)
\[\tau = \frac{L}{3.6v} \text{(giây)} \] (7.107)
\(v \) - tốc độ chảy tụ trung bình của đỉnh lũ lấy bằng 0,7 \(v_{max} \); \(v_{max} \) - lưu tốc trung bình của tuyến mặt cắt trình toàn, tương ứng với lưu lượng đỉnh lũ \(Q_m \) đã tính được.
\(v_{max} \) cùng có thể tính theo lưu lượng điều tra lũ.
\(t_s = \gamma \cdot t_f \)
\(\gamma \) là tỷ số \(t_s/t_f \), \(m, n \) - chỉ số lượn thừa của đường cong mái len và mái xuống, \(m, n, \gamma \) có thể xác định theo tài liệu thực do của quá trình một con lũ dom.Trong trường hợp không có tài liệu lưu lượng thực do thì \(m, n \) và \(\gamma \) được xác định từ lưu vực tương tự.

G. A. Alexyev dùng đường cong Gudrich để mô hình hoá quá trình lũ dom. Phương trình tính toán quá trình lũ có dạng tổng quát như sau:
\[Q_t = Q_m \cdot \frac{x}{t_f}^{(1+ax^2)} \] (7.108)
ở đây \(x = \frac{t}{t_f} \) - hoàn độ của đường quá trình lũ thiết kế tính theo phân trăm của thời gian lũ len \(t_f \); \(a \) - tham số đặc trưng cho hình dạng của quá trình lũ, nó phụ thuộc vào hệ số hình dạng quá trình lũ \(f \) như bảng sau:

<table>
<thead>
<tr>
<th>(f)</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
<th>1.3</th>
<th>1.5</th>
<th>1.9</th>
<th>2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>0.21</td>
<td>0.32</td>
<td>0.46</td>
<td>0.62</td>
<td>0.80</td>
<td>0.01</td>
<td>1.24</td>
<td>1.52</td>
<td>2.11</td>
<td>3.22</td>
<td>5.11</td>
<td>9.41</td>
</tr>
</tbody>
</table>

Hệ số hình dạng lũ được tính theo công thức:
\[f = \frac{Q_m \cdot t_f}{W} \] (7.109)
f được xác định theo con lù đón thực do hoặc của lực về trọng tự. Do chính xác của phương pháp này phụ thuộc chủ yếu vào mức độ chính xác của việc xác định t_i.

3. Phương pháp cẩn nguyên dòng chảy

Phương pháp này diễn tả quá trình hình thành lù đón từ tổng các lượng của dòng chảy thành phẩm hình thành trong các phân tích tích của lực về và chuyển qua mặt đất do đặc cùng thời gian.

Phương pháp này có ý nghĩa rất thiết thực đối với việc nhận thức sự hình thành dòng chảy lù, nó có thể ứng dụng đối với các lực về lón và nhỏ, cho cả quá trình lù đón cũng như lưu kế mà phương pháp mô hình hoá toàn học không thể mô tả được.

Tài liệu dùng để tính toán quá trình lù theo phương pháp này gồm:

a) Quá trình xuống theo kết quả do mực tự ghi

b) Bán độ lực về có tỷ lệ lớn và có các đường dòng mức độ cao.

c) Những tài liệu về tốc độ chảy tự trên nguồn gốc và lời sông của lực về tính toán hoặc lực về tương tự.

Để đơn giản hoá việc tính toán khi xác định các diễn tích chảy cũng thời gian, ta giả thiết tốc độ chảy tự là hằng số trong quá trình hình thành toàn bộ lù đón ở những lực về mà dòng chảy mới chỉ trong ưu thế chảy tự trên nguồn gốc hỗ trợ và tương ứng trong sông, người ta về các đường chảy dành thời do dòng chảy lên ban đầu lực về (trong trường hợp các đồng phù lơn người ta cùng về các đường chảy đã đổi thời cả theo đường phủ) theo tài liệu về tốc độ chảy tự của chúng, khoảng cách giữa các đường chảy dành thời là $\Delta t = \frac{L}{n}$. Trong đó L là độ dài dòng chấp của quá trình n và n là số lượng đường chảy dân thời (thường lấy khoảng từ $5 - 10$).

Nếu vậy ta đã chia lực về ra $n + 1$ mảnh diện tích chảy dân thời $f_1, f_2, \ldots, f_{n+1}$ nên mỗi mảnh tích có thời Gian chảy tự bằng một đơn vị τ_0:

$$\tau_0 = \frac{r}{n + 1} = \frac{L}{kE(n + 1)} \quad \text{(7.110)}$$

trong đó k - hệ số độ dỡ đơn vị; $v = 0.7 \sqrt{v_{max}} \text{ (v_{max} - tốc độ lớn nhất mặt cắt của ra)}$.

Sau khi do đặc diện tích các mảnh $f_1, f_2, \ldots, f_{n+1}$ ta được hàm phân phối điện tích $f = f(\tau)$ hoặc còn gọi là đường cong chảy tự. Dựa vào kết quả do mực của lực về, khảo truy tên thời ta được quá trình mưa hiểu quả biểu thị bằng lượng mực h_1, h_2, \ldots của các thời gian khoảng τ_0. Thời thời dòng chảy lù thống thường được tính bằng hệ số dòng chảy tổng lượng α, nếu không có tài liệu có thể tính theo lực về tương tự hoặc bằng một số phương pháp dễ tính bấy ở trên.

Hiện nay do việc xây dựng đường chảy cũng thời gian, sự thay đổi lượng lớn trong quá trình hình thành dòng chảy lù chưa được nghiên cứu đầy đủ, chưa tìm ra được phương pháp đón giản và tin cậy để xác định diện tích chảy cũng thời gian và xác định quá trình mưa hiểu quả, nên việc mở rộng ứng dụng phương pháp cần nghiên cứu thêm để xác định quá trình dòng chảy lù trong thực tế còn bị nhiều hạn chế.

Một số Dion cơ bản của phương pháp này là khối lượng tính toàn lớn, nhất là với những lù đón có mưa dãi ngày. Tuy vậy hiện nay do có máy tính lớn, nhất là các loại máy chuyên dụng cho dự báo lù và tính toán cho quá trình lù nên các bài toán thủy văn được giải quyết trong cả trường hợp lực về thủy liệu tài liệu thực do.

Để tính quá trình lù từ quá trình mưa, ngoài các phương pháp trên còn có thể áp dụng lý thuyết về đường lực trường dòng vị. Lý thuyết này do Sec- man đưa ra năm 1932 và hiện nay vẫn được phát triển và
7.8.3. Thành phần và sự tổ hợp nước lũ

Tính chất lũ tung côn sông riêng rẽ vào đã rất đặc biệt, nhiều con sông hợp lại tính chất lũ lụi càng hung dữ hơn, nhất là trường hợp lũ lớn ở các sông đồng thời xuất hiện. Sự tổ hợp nước lũ của ba con sông Đa, sông Lô, sông Thao thường là môi de độ lớn đối với dòng bằng sông Hồng, đặc biệt nguy hiểm hơn nếu nó gặp lũ lớn của sông Thái Bình. Việc nghiên cứu dự sử tổ hợp nước lũ là vô cùng cần thiết đối với công tác phòng chống lũ cho vùng hạ lưu. Trong giải đoạn quy hoạch lưu vực, để lựa chọn phương án bố trí công trình có lợi nhất cho chống lũ thường phải tìm hiểu việc tổ hợp nước lũ.

1. Tổ hợp lưu lượng nước lũ

Tổ hợp lưu lượng nước lũ là một trong những đối tượng nghiên cứu chính của tổ hợp nước lũ. Khí tiết kế xây dựng các công trình trên sông nhằm giải thích lượng nước lũ của các thành phần và lượng lưu tổ hợp. Lưu lượng tổ hợp chỉ là lượng lũ của sông chính, lượng lũ thành phần là chỉ lượng lũ của sông chính. Giá sử $x_1, x_2, ..., x_n$ là lượng lũ thành phần của các sông nhánh, Z là lượng lưu tổ hợp, trường hợp nhất khi giữa không gian kết ta có:

$$Z = x_1 + x_2 + ... + x_n$$

Vì $x_1, x_2, ..., x_n$ được có là đại lượng ngẫu nhiên nên Z cũng là đại lượng ngẫu nhiên, do đó cũng một giá trị Z có thể xảy ra nhiều tổ hợp khác nhau của các giá trị x_1, x_2, x_n điều đó dẫn đến việc xác định lượng tổ hợp thời tiết gặp nhiều khó khăn. Xu thế hiện nay xét tổ hợp lưu lượng nước lũ của các sông cùng và sông nhánh là thông kế các trường hợp bình quân, diện hình và tương ứng.

Trường hợp bình quân là xét tương bình trong nhiều năm, nó cho ta thấy mức độ đồng góp trung bình của các sông nhánh vào sông chính, nó phản ánh quy luật ổn định của lượng lũ thành phần và lượng lưu tổ hợp. Sông nào không xét được những trường hợp bất lợi mà khi thiết kế các công trình ta phải xét tới.

Thì dụ theo tài liệu tổng lượng lưu động bơi lũ luận nguyệt ở Sơn Tây xét sự động góp lượng lũ của sông đông với lượng lũ Hồng (Sơn Tây) ta thấy sông Đa dòng góp lượng lũ đáng kể vào lượng lũ sông Hồng (không 49,3%), sông Lô, sông Thao có tỷ lệ động góp xấp xỉ nhau. (Sông Lô chiếm 21% (chưa kể sông Chây) sông Thao chiếm 20,5%).

Trường hợp điển hình là lấy những trường hợp thực tế đã xảy ra trên lưu vực tính tỷ lệ động góp lượng lũ của các nhánh vào lượng lũ sông chính, nó phản ánh một cách tự nhiên nhất một tổ hợp lũ đã có. Như vậy từ kết quả thực tế ta có thể chọn ra bữa nhiều tổ hợp điển hình.

Do đó khi thiết kế các công trình người ta thường chọn những điển hình bắt lợi tức là lũ lụt xảy ra ở các lưu vực sông lớn mà tiêu thụ công trình không konng chê được.

Thì dự trên lưu vực sông Hồng khi lượng lũ 7 ngày, 15 ngày lũ lớn ở Sơn Tây xảy ra không, nếu ta chọn mồ hình phù hợp lũ điển hình là năm 1945 thì lượng lũ xảy ra trên sông Đa chiếm tỷ lệ lũ lớn 50,9 - 54,8%, nếu ta chọn mồ hình là năm 1971 thì lượng lũ xảy ra trên sông Lô lại chiếm tỷ lệ lũ lớn so với năm 1945.

Trường hợp tương ứng: trong thiết kế các công trình thường xảy ra trường hợp đã đảm bảo nhiệm vụ chống lũ cho vùng hạ lưu với tần suất nhất định, người ta xây dựng công trình trên một sông nhánh lớn ở thượng lưu có tần suất thiết kế nước lũ tương ứng với vùng hạ lưu, lúc đó phải xác định lượng lũ thành phần của các sông nhánh khác.
Bảng 7.6. Tỷ lệ đóng góp lượng lưu của các sông cho sông Hồng (trung bình 57 năm)

<table>
<thead>
<tr>
<th>Sông, trạm</th>
<th>$\alpha = \frac{W}{W_{ST}}$</th>
<th>Lượng lưu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>W7 ngày</td>
</tr>
<tr>
<td>Đă (Hòa Bình)</td>
<td>49,6%</td>
<td>49,3</td>
</tr>
<tr>
<td>Thao (Yên Bái)</td>
<td>20,5</td>
<td>20,8</td>
</tr>
<tr>
<td>Lô (Tuyên Quang)</td>
<td>22,0</td>
<td>20,8</td>
</tr>
<tr>
<td>Khu giữa</td>
<td>7,9</td>
<td>9,1</td>
</tr>
</tbody>
</table>

Bảng 7.7. Tỗ hợp lưu theo diện hình trên lưu vực sông Hồng

<table>
<thead>
<tr>
<th>W(10^9 m3)</th>
<th>Lượng lưu 7 ngày</th>
<th>Lượng lưu 15 ngày</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sơn Tây</td>
<td>Hòa Bình</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17,0</td>
<td>9,32</td>
<td>3,42</td>
</tr>
<tr>
<td></td>
<td>54,8</td>
<td>20,1</td>
</tr>
<tr>
<td>17,0</td>
<td>6,59</td>
<td>4,37</td>
</tr>
<tr>
<td></td>
<td>38,8</td>
<td>25,8</td>
</tr>
</tbody>
</table>

	31,09	15,97	6,46
		50,9	20,8
	31,78	12,9	7,43
		40,6	23,4
	7,59	22,5	

	Sơn Tây	Hòa Bình	Tuyên Quang
	17,01	15,97	6,46
	31,09	15,97	6,46
	31,78	12,9	7,43

2. Sự góp góp của lưu lượng dinh lũ

Khi sông lưu vận động trong sông thượng xảy ra tương hợp biển đằng làm cho lưu lượng giảm nhỏ, cùng với hiện tượng giao thoa sông lưu ở nơi hợp lưu và dinh lũ của các sông nhánh không xuất hiện dòng bộ, nên ta không thể dùng phương pháp cộng trừ như lượng lưu để nghiên cứu sự tố hợp.

Lưu lượng dinh lũ của sông chính và các sông nhánh và sự góp góp của chúng không những chỉ phụ thuộc vào các tính chất của mực (cường độ mực, hướng đi của mực, sự thay đổi phân phối về thời gian và không gian của mực) trên lưu vực mà còn phụ thuộc vào địa hình và hình dạng của lưu vực.

Nếu địa hình của lưu vực ít cát xê, lưu lượng mực phân bố đều, mang lưu lượng hình cảnh cây chây dại thì sự tố hợp lưu lượng dinh lũ của các sông nhánh về hạ lưu sẽ không dòng bộ, số lượng góp góp lưu lượng dinh lũ các sông sẽ thấp. Nước lũ, nếu các sông có dạng hình nan quặt thì sự tố hợp lưu lượng dinh lũ giữa các sông nhánh sẽ dòng đều. Nếu địa hình cát xê mực sự phân bố mực sẽ không dòng đều tức đó tố hợp lưu lượng dinh lũ giữa các sông cung khác nhau, sự góp góp lưu lượng dinh lũ giữa các sông xảy ra ít. Như thượng nguồn sông Đă, mới thượng quan lưu lượng dinh lũ giữa các lưu vực Nậm Chiến, Nậm Mả, Nậm Pơ, Suối Sappid ngắn thì số lượng quan trọng lưu lượng dinh lũ giữa lưu vực Nậm Chiến, Suối Sappid chỉ 0,45. Nước lũ sông Lô có dạng hình nan quặt trên nền địa hình biết cát xê, mực dòng đều đối, lưu lượng góp góp vào các nhánh sông thượng xativas hiện tượng dòng bộ, hệ số thượng quan của lưu lượng dinh lũ giữa các trạm Tuyên Quang, Chịm Hoà đạt tới 0,96; Tuyên Quang, Hàm Yên đạt tới 0,94.

Sự góp góp giữa lưu lượng lũ nhất của các con sông và sông lũ rất phức tạp với tính đa dạng của các khí hậu và mặt đê mà các sông lớn đó ra, các khu vực khí hậu và mặt đê do nên khác xa nhau thì sự xuất hiện dòng bộ giữa lưu lượng các nhánh sông lũ cảng ít; nhưng lưu lượng lũ như sông Cửu Long đang dựa quá trình lưu lượng lên xuống từ tự, sau xuất hiện lũ lụt nhất của các sông nhánh thượng lưu chỉ gây nên những biến đổi sông lũ nhất như trên nền của con lưu lũ. Theo tài liệu thống kê 57 năm (từ 1912 - 1945 và 1956 - 1978) sự góp nhau của con lưu lũ nhất hàng năm ba sông nhánh và sông Hồng như bảng 7.8.

Qua bảng thống kê ta thấy số lần góp góp lưu lượng lũ nhất của sông Đă và lưu lượng lũ nhất của sông Hồng là nhiều nhất (chiếm 64,9%). Trong đó riêng lưu lượng lũ nhất của sông Đă góp lũ lũ nhất của sông Hồng là 26,3%, 121
còn lại là cung cấp với lưu lơn nhất của các sông khác. Số lần gập gò giữa lưu lơn nhất của cả ba sông với lưu lơn nhất của sông Hồng rất nhỏ chỉ chiếm 12,3%. Số lần gập gò giữa lưu lơn nhất của 2 sông với lưu lơn nhất của sông Hồng chiếm 31,8% trong đó chủ yếu là sông Đa + sông Lô, sông Đa + sông Thao.

Bảng 7.8. Lưu lơn nhất của các sông gập nau khi lưu sông Hồng (tại Sơn Tây) là lưu lơn nhất

<table>
<thead>
<tr>
<th>Số lần gập gò %</th>
<th>Sông Đa Hòa Bình</th>
<th>Sông Thao Yên Bái</th>
<th>Sông Lô Tuyên Quang</th>
<th>Không do sông nào</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sông Đa</td>
<td>15*</td>
<td>5</td>
<td>10</td>
<td>17,5</td>
</tr>
<tr>
<td></td>
<td>26,3</td>
<td>8,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sông Thao</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8,8</td>
<td>15,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sông Lô</td>
<td>10</td>
<td>3</td>
<td>5,5</td>
<td>5,5</td>
</tr>
<tr>
<td></td>
<td>17,5</td>
<td>5,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sông Đa + Thao + Lô</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12,3</td>
<td>12,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tổng cộng</td>
<td>37</td>
<td>24</td>
<td>23</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>64,9</td>
<td>42,1</td>
<td>40,1</td>
<td>8,8</td>
</tr>
</tbody>
</table>

*Riêng lưu lơn nhất của từng sông gập lưu lơn nhất của sông Hồng

3. Tố hợp nguồn gốc nước lũ

Trườn hợp lượng lưu trong các sông nhánh tương dương nhau, các tố hợp lượng lưu như đã trình bày ở trên không cho thấy lượng lưu sinh ra trên lưu vực nội nào mạnh, nội nào yếu. Lưu vực sông Lô tính đến Tuyên Quang chỉ chiếm diện tích bằng 3/5 diện tích lưu vực sông Thao tính đến Yên Bái, nhưng dòng hợp lượng lưu cho sông Hồng lon hơn. Vì vậy muốn biết lượng lưu nội nào mạnh hơn, nội nào yếu hơn ta phải so sánh với diện tích của chúng. Trên cơ sở so sánh tỷ số lượng lưu thành phần của từng nhánh sông với lượng lưu tổ hợp lớn hay nhỏ hơn tỷ số diện tích của nhánh sông đó so với toàn bộ lưu vực mà kết luận rằng nguồn gốc nước lũ ở nội do mạnh hay yếu.

7.8.4. Mưa lũ ở Việt Nam

Thời gian xuất hiện mưa lũ:

Sự xuất hiện mưa lũ, mưa cần trên sông, suối nước ta có sự phân hoá rõ rệt trong không gian. Trong toàn lãnh thổ có thể chia ra các vùng có thời gian xuất hiện mưa lũ khác nhau như sau:

- Khu Đồng Bằng và Tây Bắc Bắc Bộ có mưa lũ xuất hiện và kết thúc sớm nhất so với các vùng khác trong cả nước, kéo dài từ tháng VI đến tháng IX. Lưu xuất hiện sau mùa mưa một tháng và kết thúc cùng với mùa mưa. Riêng vùng Tây Bắc kết thúc thuộc mùa mưa một tháng. Mưa lũ ở các sông suối họ đường xuất hiện ngày sau khi có mua. Lưu bắt đầu và kết thúc ở vùng này có liên quan đến sự hoạt động s amor của gió mùa Tây Nam và các hoạt động thời tiết như bão và áp thấp nhiệt đới.

- Các khu còn lại ở Bắc Bộ, bao gồm lưu vực sông Đa, sông Thao, sông Chây, đồng bằng sông Hồng, hạ lưu sông Thái Bình và sông Mê có mưa lũ bắt đầu vào tháng VI nhưng kết thúc vào tháng X. Sở dĩ mùa mưa này kết thúc thuộc mùa nữa do mùa mưa ở đây kéo dài đến tháng X, do hoạt động mùa của gió mùa Đông Nam và sự hoạt động của bão và áp thấp nhiệt độ dịch dần về phía Nam.

- Khu vực từ Thanh Hoá đến Nghệ An bao gồm lưu vực sông Chu và sông Cà, mưa lũ bắt đầu từ tháng VII, VIII đến tháng XI. Tại đây mưa lũ bắt đầu thuộc mùa mưa chính hai ba tháng, có xuất hiện lũ tiểu miền vào tháng V đến tháng VII và dạng phân phổ lũ trong năm có hai đỉnh. Sau thời kỳ lũ tối mavn nước
trong sông giảm khoảng từ 1 - 1,5 tháng và bắt đầu mưa lũ chính do sự hoạt động của bão và áp thấp nhiệt độ front cực.

- Khu vực Hà Tĩnh đến đêo Hải Vân có mưa lũ từ tháng IX đến tháng XII. Mùa mưa và mưa lũ trung bình tạo điều kiện thuận lợi cho các sông ngòi và đê.

- Khu vực Nam đêo Hải Vân đến Bình Thuận có mưa lũ từ tháng X đến tháng XII. Mưa lũ xuất hiện sau mưa mưa chủ yếu một tháng.

- Tây Nguyên mưa bắt đầu từ tháng V nhưng tới tháng VII hoặc tháng VIII mới xuất hiện lũ và kéo dài tới tháng XI hay tháng XII.

- Nam Tây Nguyên và Ninh Thuận có mưa lũ từ tháng VII đến tháng XI. Mưa lũ bắt đầu chậm hơn và kết thúc chậm hơn một tháng.

- Mưa lũ ở đầm bằng sông Cửu Long từ tháng VII đến tháng XI hoặc đầu tháng XII.

Đồng chảy trong mùa lũ

Đồng chảy mùa lũ trên các sông ngòi Việt Nam chiếm từ 60-90% tổng lượng dòng chảy năm. Nguyên nhân chính là do tình phần phôi mực không đều trong năm, ngoại ra còn do địa hình điều tiết lưu vực của các sông suối trên lãnh thổ.

Tai khu vực Nam Nghệ An và Bắc Quang Bình dòng chảy mùa lũ chỉ chiếm 50-60% lượng dòng chảy năm là do một phần dòng chảy tập trung vào 1-2 tháng mưa tiêu truyền.

Trong khi đó ở Tây Nguyên và Đồng Nam Bộ lượng nước mưa lũ chiếm tới 90% tổng lượng dòng chảy năm.

Nơi chung lưu vực sông càng nhỏ thì tính điều tiết của lưu vực càng kém và sự phân bố dòng chảy trong năm càng kém điều hòa.

Giá trị mở rộng dòng chảy trên các sông suối nước ta biến đổi từ 25 - 250 l/s km². Giá trị mở rộng dòng chảy lũ cao nhất quan sát thấy tại Bắc đêo Hải Vân (>200 l/s km²), thấp nhất tại Nam Ninh Thuận (25 l/s km²).

Thời gian dòng chảy ba tháng lớn nhất không đồng đều tại các vùng trong nước, nó phụ thuộc vào tốc độ tập trung mưa trong năm.

Thời gian dòng chảy ba tháng liên tục lớn nhất từ sông Mã trở ra là từ tháng VI đến tháng VIII, sông Chu và sông Cà VIII-X; Hà Tĩnh đến đêo Hải Vân IX-XI; Nam đêo Hải Vân đến Ninh Thuận X-XII; Trung Tây Nguyên IX-XI và Nam Tây Nguyên VIII - X. Lượng dòng chảy trung bình ba tháng, thường chiếm tới 50-70% lượng dòng chảy toàn năm. Các lưu vực Đồng Trường Sơn có độ độc lón, dòng chảy ba tháng chiếm 60-70%, còn lưu vực có độ che phù tốt, dòng chảy ba tháng lớn nhất có khi chỉ chiếm 40-50% dòng chảy năm.

Tài nguyên nước với dòng chảy lớn nhất

Nước chi được xem là tài nguyên khi con người có thể sử dụng. Tài nguyên nước tồn tại hai hình thức: hình thức lợi dụng nước mà không gây tổn thất và hình thức tiêu thụ nước. Những lĩnh vực lợi dụng nước bao gồm thủy điện, giao thông thủy, thủy sản, du lịch nghỉ ngơi,..., những lĩnh vực tiêu thụ nước - nông lâm nghiệp, chăn nuôi, dân sinh...

Những lĩnh vực này đòi hỏi sở lưu lượng nước, chế độ nước và chất lượng nước khác nhau và đối khí còn mưa thuận với mưa. Đối với các công trình lợi dụng nước, nước trong mùa mưa có thể đảm bảo hoạt động hết công suất của công trình, nếu đủ cung tích điều tiết đúng. Đối với các quy hoạch kinh tế tiêu thụ nước,
người lại trong mùa mưa, đặc biệt ở vùng đô thị, dòng chảy trên mặt hay dòng chảy lũ gây ra những tác hại đối với nông - làm nghiệp như xói mòn, rụa rơi, ngập úng.

Động vên mắt khi đầu sinh vật, hai dòng hạng lớn nhất nước ta là dòng bằng Nam Bộ và dòng bằng Bắc Bộ thuộc hai kiểu khác nhau, đó là kiểu núi rừng lũ đối với dòng bằng Bắc Bộ và rừng lũ đối với dòng bằng Nam Bộ. Ở mực nước, vẫn để nổi bạt nước lũ là ứng lực. Biến pháp dự hy tiện nay là điều tiết bằng nhiều hình thức ở các vùng đối lũ phía trên. Biến pháp hữu hiệu nhất mà ta đã và đang tiến hành là xây dựng hồ chứa Thác Bà và đập Thủy điện Sông Đà.

Nhu chống ta đã biết ý nghĩa điều tiết lũ công trình càng lớn nên như hồ nước cách xa động bằng. Sông ngày này về thủy ngân sẽ giảm đi. Về thực lợi ấy đối với điều tiết lũ, vai trò của hồ Tônglêsap đối với dòng bằng sông Cửu Long có ý nghĩa cực kỳ to lớn, mặc dù thể vân đến điều tiết lũ ở sông Hệ Kê Gà và sông còn nhiều mặt khác. Một ưu thế lớn của Tônglêsap lại là giảm cường suất lũ một cách đáng kể; đặc điểm này cũng không phải thuộc tính của riêng công trình mà còn do vai trò của mưa bão trong hình thành lũ giảm đi đáng kể. Nước lũ, theo tính toán với dụng tích 9 tỷ m3 nước, hồ nước sông Đà chỉ giữ được 1/8 khối lượng nước mưa của sông Hồng về động bằng (khối lượng nước của lưu toàn bộ lưu vực sông Hồng từ Sơn T.nasa và 72,9 tỷ m3 nước). Thêm vào đó, nước lũ của lưu vực sông Hồng trong phần vi nước một phần do bão và xóa thuận nhiều đối phát triển trên diễn rộng. Vào mùa lũ hiện tượng ngập úng của dòng bằng Bắc Bộ không phải chỉ do lũ thường nguồn mà bao gồm nhiều nguyên nhân kết hợp.

Theo số liệu phân tích mua do báo của Phan Tật Dắc, bình quân nhiều năm lượng nước do bão và xóa thuận (theo tác giả mua kêm với gió mạnh có tốc độ 20m/s) ở dòng bằng Bắc Bộ chiếm 10 - 20%. Vấn đề là ở chỗ, lượng mua do không xay ra hàng năm mà tập trung vào một số năm, trong những năm ấy, tính giảm doan theo thời gian của lượng mua lớn cũng cao và sự tập trung theo cường độ càng lớn. Vào những năm ấy có thể xay ra hạn thỏi trong mùa mưa (ô đây là hạn độ với lúa nước, cày độc canh của dòng bằng Bắc Bộ). Nhiều lượng mưa như vậy thường xảy ra dòng thỏi cùng với lũ trọng sông từ thượng nguồn. Yêu tố thứ ba cũng góp phần gây ngập úng không kém quan trọng chính là hiện tượng nước dâng trong báo và xóa thuận.

Hiện tượng nước dâng ở biến đặ lắm cho việc tiêu nước trở nên khó khăn. Khắc với dòng bằng sông Cửu Long nói riêng và dòng bằng Nam Bộ nói chung, ba yếu tố gây ngập úng đều liên quan tới báo và xóa thuận là những hiện tượng có tính chất bất ngờ, khó dự báo trước. Trong các hiện tượng thiên nhiên, biến động nhất là những hiện tượng khi tự nhiên thủy văn mà các quan triền khi tự nhiên thủy văn trong vùng nhiệt đới gió mùa mang trong mình một năng lượng tiềm cảnh đối ứng nhất gồm lũ và biến động mạng mề kềm theo cực đọan. Hình thái cực đọan trong mùa lũ chính là ngập úng.

Trong quá trình tiến tới hoàn toàn điều khiển các hiện tượng này, trước mắt cần tập trung tìm hiểu về lũ trên cơ sở dùng hiện tượng ngập úng, thời gian, cường suất và tan suất lập để có những phương án sử dụng đạt cải tiến những thời kỳ ngập úng.

Hơn nữa, lãnh thổ đổi núi nước ta rất không đồng nhất về mặt sinh khí hậu, bao gồm từ rừng kín thường xanh mura ẩm nhiệt đới, núi cao, rừng kín thường xanh mura ẩm nhiệt đới nữa rung lá và rung lá với sự khắc biệt rõ rệt và cấu trúc can can núi như đã nói ở các phần trên. Hài đặc điểm như trên còn biểu hiện tập hoa bộ sự khác nhau về chiều dỗ mưa, chiều dỗ mưa hạ gần liên với gió mùa và chiều dỗ mưa thu gần liên với bão và một chiều độ chuyển tiếp ở các vùng núi cao dẫn gió nhiều hướng.

Những đặc điểm như trên đã tạo ra những mẫu thuận trong sử dụng nước vào mùa mưa. Các công trình lợi dụng nước thượng phần bố ở nơi đất đai, chia cắt, đối nước nằm thấp trong khi các đối tượng tiêu thụ nước nằm trên cao, sông suối, nguồn nước không ổn định, nước trên mất tùy thuộc nhiều vào chiều độ mực.

Thềm vào đó, hầu hết các cao nguyên đạt phi niche đều trải qua những giai đoạn can tác nước ray, thực vật thượng ở các diện thể thoát hoa, do đó cấu trúc can can nước bị phá hủy ở các mức độ khác nhau. Độ tích và giữ nước giảm đi. Để phục vụ nông nghiệp, phát huy tiềm năng đất đai ở đây vẫn đề giữ nước, giữ mâu là biện pháp hàng đầu. Mặc dù nhận dân ta vốn có truyền thống làm lúa nước ở đồng bằng, nhưng kinh nghiệm khai thác các vùng đổi núi, làm nông nghiệp có tối và đặc biệt là kinh nghiệm trong các cây cỏ có thể mở rộng hết sức hạn chế.

Các vùng đổi núi nước ta mới chỉ được khai thác mạnh mẽ từ những năm 1950 trở lại đây mà chủ yếu là mực. Một trong những khões khẩn hiện nay chính là ô nhiễm chuyển từ một nền sản xuất đất nước làm cây nản thân nên sụt giảm can tác như các cỏ trỏng quý, ổn định với một kỳ thuật can tác một, giữ mâu một cách kinh hoa và hiện đại.

Nghiên cứu quá trình Đặc biệt hoa trên quang điểm hệ thống: đất, nước, cây trồng và môi quan hệ của chúng theo phương thẳng đứng và năm ngang chính là cơ sở để quy hoạch cây trồng năng suất cao ổn định, chăn được hiện tương xoay mơn, mưa troi. Còn tồn tại nhiều căn lưu ý nữa là: do sự tác động của các đối tượng lợi dụng và tiêu thụ nước trong không gian nên quy hoạch phát triển kinh tế xã hội thông nhất và hoàn chỉnh không thể không gian tăng các chi phí vào giao thông và truyền tải năng lượng.

Vùng đổi núi nước ta phong phú về nước, đặc biệt vào mùa mưa, nguồn lợi thủy năng to lớn. Song đặc điểm của lưu liên quan với các nguồn nhận hình thành nhờ nét trong không gian. Những đặc điểm này của lưu như độ lớn và tương đối lưu quyết định vốn đầu tư của công trình, quy mô và sự bền vững của công trình. Có lẽ nhà quan trắc thủy văn không thể nào quên được những latino lưu quyết ở những vùng chịu ảnh hưởng của bão.

Tài nguyên nước và việc khai thác sử dụng hợp lý nó luôn luôn là vấn đề thời sự và đối hồi những sự nghiên cứu có chiều sâu hơn nữa trong khoa học thủy văn.
Chương 8
DÒNG CHÁY BÊ NHÁT

Lưu lượng nước bể nhất là một trong những đặc trưng thủy văn cơ bản, thường được sử dụng nhiều trong các qui hoạch xây dựng, tuồng tiêu, sử dụng nước trong sinh hoạt và bảo vệ môi trường.

Đồng chảy bể nhất là chỉ tiêu để điều chỉnh sự phân phối dòng chảy trong năm, đặc biệt là đối với các công trình đê hói sự vận hành liên tục như công nghiệp nặng, thủy điện v.v..

Nếu vậy các thông tin về lưu lượng nước cực tiêu đáp ứng như cầu đánh giá dòng chảy tự nhiên của sông ngòi cũng như để đánh giá mức độ hoạt động kinh tế qua dòng chảy sông ngòi.

Các đặc trưng tính toán chủ yếu của dòng chảy bể nhất là dòng chảy trung bình tháng hoặc dòng chảy trung bình 30 ngày, thậm chí dòng chảy trung bình ngày để quan trắc vào thời kỳ kết

Nếu thời kỳ kết trên sông ngòi (ít hơn hai tháng) hoặc không liên tục (mùa kết xem lần mùa lũ) thì khó có thể nào không có lũ, khi đó ta chọn 30 ngày liên tục để tính đặc trưng lưu lượng bể nhất. Để làm được điều đó ta dựa các dự lượng quá trình nước các năm quan trắc để chọn một thời kỳ quan trắc có 30 ngày nước kết liên tục làm thời kỳ tính toán.

Nếu ngày cả việc chọn một thời kỳ tính toán 30 ngày cũng gấp khó khăn thì phải sử dụng thời kỳ ngày hơn, nhưng không nên hơn 30 ngày 2-3 tháng để tránh ảnh hưởng của lũ trong tính toán.

Đồng chảy trung bình 30 ngày cực tiêu luôn nhỏ hơn dòng chảy trung bình theo lịch, bởi vậy nếu hiểu chỗ chúng không sai quá 10% thì nên sử dụng dòng chảy trung bình.

Nếu sử dụng đương tần suất thì dòng chảy bể nhất ứng với tần suất từ 75-97%.

8.1. TÌNH TOÁN ĐỒNG CHÁY BÊ NHÁT KHI CÓ SÓ LIỆU QUAN TRẮC

Khi tính toán dòng chảy bể nhất của sông ngòi có quan trắc thủy văn về dòng chảy, độ dài chuỗi được coi là đủ để xác định xác suất tính toán năm của lưu lượng nước cực tiêu nếu như số độ lệch chuẩn phương tương đối của chuỗi quan trắc σ_d không vượt quá ±15%.

Khi độ quan trọng nhất là các năm nước ít hay nhóm năm theo sóng tương tự. Hệ số biến đổi dòng chảy cực tiêu các sông không ổn và không đồng bằng năm trong khoảng 0,2-0,4. Điều đó cho phép sử dụng để tính toán các chuỗi có từ 8-15 năm. Tuy nhiên nếu hệ số biến đổi ở khoảng 0,7-1 đòi hỏi phải kéo dài chuỗi quan trắc tối 20-40 năm.

Lưu lượng nước bể nhất với tần suất tính toán được xác định bằng việc sử dụng ba tham số Q, C_v, C_s như đã xác định với chuỗi dòng chảy năm. Giả trị dòng chảy trung bình của lưu lượng là giá trị trung bình số học tính riêng cho từng mùa. Khi đó không kế chuỗi được tính toán với 30 giả trị hay ít hơn (23-25 giả trị).

Việc xây dựng các đường cong đánh báo dòng chảy bể nhất được tiến hành riêng cho từng thời kỳ theo các qui tắc như đối với dòng chảy năm. Nếu giả trị dòng chảy bể nhất có những giả trị bằng 0 do nước sông ngòi khó cần thì tham số đặc trưng của chuỗi có thể lây theo phương pháp đồ giả điệu từ Alecayev với đường cong đánh báo thực nghiệm được lâm thông. Nếu giả trị σ_d vượt quá giả trị cho phép, cần phải tiến hành kéo dài chuỗi bằng phương pháp tương tự. Khi chọn sóng tương tự trước hết cần chú ý đến tính đồng bộ về các điều kiện thủy và chia các chuỗi theo các Lưu vực đồng nhất. Để thực hiện điều đó, cần nghiên cứu các mô tả dòng chảy và bán đồ vững nghiên cứu cũng như bán đồ vững để xác định dòng chảy cực tiêu xây dựng cho
lành thô. Và một điều quan trọng nữa khi chọn sông trung tự là các sông phải được đánh giá cùng một dạng theo kích cỡ (diện tích lưu vực) hoặc sự chuyển động lưu lượng lại ít nhất.

Khi thiếu cả sông trung tự và $\sigma_u > 40\%$ thì cần xét chuỗi như là thiếu tài liệu quan trắc.

8.2. TÍNH TOÁN DÒNG CHÁY BÊ NHIỆT KHI KHÔNG CÓ TÀI LIỆU QUAN TRẮC

Tính toán lưu lượng nước bê nhiệt với đối đảm bảo cho trước đối với sông ngòi chưa nghiên cứu trong trường hợp tài liệu thực tế không đáp ứng tính toán theo các công thức xác suất thống kê, cần phải dựa vào một trong các phương pháp sau đây:

1. Xác định các đặc trưng cần tìm của dòng chảy bê nhiệt với việc sử dụng các quan trắc ở các sông tại lưu vực sông trung tự.

2. Xác định các giá trị tính toán dòng chảy trên cơ sở khảo sát qua ba tham số: chuẩn dòng chảy bê nhiệt, hệ số biên đối và hệ số bất đối xứng theo tài liệu của các sông đã được nghiên cứu.

3. Sử dụng các hệ số chuẩn đối từ dòng chảy bê nhiệt của một tần suất đạm bảo xấp xỉ (cho trước) của dòng chảy cần tìm.

Phương pháp thứ ba ngày nay được ứng dụng rộng rãi trong thực tế qui hoạch xây dựng. Khi đó dòng chảy bê nhiệt với suất đảm bảo cho trước là lưu lượng nước 30 ngày bê nhiệt ứng 80% suất đảm bảo.

Không phụ thuộc vào phương pháp tính toán các đặc trưng cần thiết của dòng chảy bê nhiệt (chuan hay là suất đảm bảo dòng chảy cho trước) được xác định bởi các phương pháp cơ bản: theo bản đồ đường dòng chảy hay theo các mô phụ thuộc giữa dòng chảy bê nhiệt với các điều kiện địa lý tự nhiên nhất. Mỗi phương pháp đều có giới hạn sử dụng nhất định: ban đầu dùng cho các lưu vực sông trung bình, còn các quan hệ vững: sông nhỏ.

Sông nhỏ là các sông hoàn toàn không được nuôi dưỡng bằng nước ngầm. Kích thước lưu vực được coi là nhỏ (kích thước giới hạn) được xác định bằng cách xây dựng mối quan hệ giữa mô dòng chảy bê nhiệt 30 ngày với diện tích lưu vực. Các quan hệ như vậy được xây dựng cho các vùng dòng chảy nhất định về điều kiện địa lý tự nhiên (vị trí địa lý, địa hình, độ ẩm v.v.).

Đối với vùng từ địa ô ám có diện tích lưu vực lớn hơn 20 km² và lưu vực lớn hơn 50 km² trong vùng ảnh biêng sử dụng công thức:

$$Q_{\text{min}} = a(F \pm f)^n$$ \hspace{1cm} (8.1)

với Q_{min} - lưu lượng bê nhiệt 30 ngày; F - diện tích lưu vực sông; f-diện tích trung bình của vùng không có dòng chảy hoặc diện tích trung bình lưu vực ngầm; a, n - tham số đặc trưng cho độ ẩm của vùng đã cho và dự đoán lũ thay đổi dòng chảy khi tăng diện tích lưu vực. Khi diện tích lưu vực nghiên cứu nhỏ hơn diện tích lưu vực trung bình thì dòng chảy bê nhiệt nhận giá trị 0.

Công thức (8.1) không được sử dụng cho vùng biểu chi phối bởi sự điều tiết do ao hồ hoặc có hiện tượng thủy văn karst.

Theo các mối quan hệ phụ thuộc có các phương pháp sau.

1. Đè xác định giá trị trung bình nhiều năm(choan) mô dòng chảy ngày đêm bê nhiệt sử dụng phương trình:

$$\overline{M}_{\text{nat}} = a\overline{M}_{50} - b$$ \hspace{1cm} (8.2)
với \(M_{nd} \) - mồ đun đồng chảy ngày đêm trung bình bể nhất (l/skm²); \(M_{30} \) - mồ đun đồng chảy 30 ngày đêm bể nhất xác định theo các phương pháp tính toán cho lưu vực vưa và nhờ; \(a \) và \(b \) - các tham số xác định theo các quan hệ vũng.

2. Đệ xác định lưu lượng ngày đêm bể nhất dùng suất dân bao 80% sự dụng phương trình:

\[Q_{80\%_{nd}} = k Q_{80\%_{th}} \]

(8.3)

\(Q_{80\%_{th}} \) - lưu lượng bể nhất 30 ngày (tháng) dùng với tận suất dân bao 80%; \(k \) - hệ số chuyển đổi, xác định theo bảng quan hệ vũng.

Ton tại mỗi quan hệ:

\[Q_p = \lambda Q_{80\%_{th}} \]

(8.4)

với \(Q_p \) - lưu lượng nước ngày đêm (tháng) bể nhất suất dân bao tính toán; \(\lambda \) - hệ số không phụ thuộc vào mùa xác định và diện tích lưu vực.

Ngoài việc xác định dòng chảy bể nhất cần nghiên cứu cấu tạo khối khô can của sông ngồi như là một tài liệu rất cần thiết cho người sử dụng để tiến liệu trước, nhất là khi tính toán có sự dụng công thức (8.1).

8.3. TÌNH HÌNH DÒNG CHÁY KIẾT Ở VIỆT NAM

Mưa can (kiệt) là thời kỳ nước sông can kiệt. Nguồn cung cấp nước sông trong mùa can là nước ngàn và một số trận mưa trong mùa.

8.3.1. Các thời kỳ dòng chảy kiệt

Căn cứ vào lượng nước và tính biến động của nó có thể chia mưa can ra ba giai đoạn:
- Giai đoạn đầu mưa can: đây là thời kỳ chuyển tiếp từ mưa lũ sang mưa can, nước sông còn đổi dạo.
- Giai đoạn giữa mưa can: là thời kỳ nước sông can nhất, nguồn nước sông do nước ngàn cung cấp là chính.
- Giai đoạn cuối mưa can: thời kỳ chuyển tiếp từ kiệt sang mưa lũ, nước sông tăng lên rõ rệt do những trận mưa đầu mùa cung cấp.

Tuy mưa can kéo dài từ 7-9 tháng nhưng tổng lượng dòng chảy trong mưa can chiếm từ 10 - 40% dòng chảy năm. Đồng chảy mưa can lớn nhất ở Trung Trung Bộ nơi có lưu miền, ít nhất ở Nam Ninh Thuận.

8.3.2. Nước trong mùa khô và các vấn đề về nước

Nhu ở trên đã nêu, mặc dù có sự liên tục của giới mưa đồng bắc trên lãnh thổ nước ta, nhưng do sự khác biệt của các khối khí về mặt nhiệt độ và độ ẩm, mùa khô trên đất nước ta rất phức tạp và có sự phân hoá trong khoảng rõ rệt.

Điều diễn biến rất rõ rệt trong các tiểu thám trên quan điểm hệ sinh thái hay các tiểu cảnh quần đà được phát hiện trong những năm gần đây.

Khái niệm mùa khô trên quan điểm tổng hợp này ứng với thời kỳ mà nước sông trong sông có nguồn gốc nước ngàn và nước hoàn toàn khác với khái niệm mùa trong thủy văn mà chúng tôi đã đề cập ở những phần trước.

Trong mùa khô các quá trình bốc hơi tăng mạnh, lượng nước trong đất và nước ngàn giảm đi rõ rệt; mất khả năng chuyển động của các tầng dưới lên cống với sự chuyển động nước sông gây ra tập trung cao độ các độc tố có hại cho cây trồng.
a) Hậu quả của sự khô hạn trong mùa khô ở vùng đồng bằng Bắc Bộ là những hiện tượng sương muối. Những nơi chịu ảnh hưởng của sương muối nặng là những thung lũng hướng về dòng bắc và có lượng nước ngầm thấp nhất.

Đây là hiện tượng đặc thù có liên quan với nước trong mùa khô và các kiểu cảnh quan nước rừng là có mùa khô lạnh.

b) Ở đồng bằng Nam Bộ lại xuất hiện hiện tượng phen. Nó đặc trưng cho kiểu cảnh quan rừng rừng lá với mùa khô nóng.
Chương 9
DÒNG CHAY RÂN

Đồng nước với bất kỳ mô nào đều thực hiện một công mà giải trí của nó phụ thuộc vào lượng nước chảy và độ cao nước chảy trên đoạn đó. Một phần năng lượng đó được chi vào việc bão mòn và xói lở trên suối đốc, bờ và đáy sông ngồi, vận chuyển sản phẩm theo dòng chảy. Sản phẩm vật chất rắn và chất hòa tan mang theo dòng nước được gọi là dòng chảy rắn.

Có hai loại xói mòn cơ bản là xói sâu và xói ngang. Xói sâu đặc trưng cho vùng thượng lưu và xói ngang đặc trưng cho vùng trung, hạ lưu sông ngồi.

Khảo sát quá trình hình thành phù sa sông ngồi chỉ ra rằng, vùng cung cấp phù sa chủ yếu của sông ngồi là vật chất từ bề mặt lưu vực và mạng lưới sông suối nhỏ đầu nguồn. Phần lớn các vật chất bão mòn lắng đọng và tích tụ tại các chỗ rốn trên lưu vực và chân suối, cấu tạo, một phần vật chất hạt mịn thấm gia vào lòng sông dưới dạng phù sa lợp lửng. Một phần phù sa khi đã xả ra ngoài sông bị giới hạn ở các cổ nhân v.v.. nên các doạ nô tại các trầm thuy vẫn không tiến hành được.

Một lượng phù sa trong sông doctrines bão mòn đáy và hai bờ trong quá trình chuyển dòng của dòng nước gây nên bồi chuyển dòng rốn và di chuyển theo dòng nước dưới hai dạng: lợp lửng và đáy gốc là phù sa lợp lửng và phù sa đáy. Phù sa lợp lửng trong sông chiếm đại bộ phận. Ở miền đồng bằng, phù sa đáy chỉ chiếm khoảng 10% phù sa lợp lửng, miền núi từ 10-20 % hoặc hơn nữa.

Khi nghiên cứu và tính toán dòng chảy rắn chủ yếu quan tâm đến phù sa lợp lửng.

Phù sa lợp lửng bao gồm cả các mói hoa tan và các hợp chất hoá học khác trong theo dòng nước.

Do vậy phù sa (dòng chảy rắn) tự trung gom bau thành phân chính: 1) phù sa lợp lửng; 2) phù sa đáy; 3) vật chất hoa tan.

Thông tin về dòng chảy rắn và phương pháp tính toán chúng không kêm phần quan trọng so với các đặc trưng dòng chảy khác. Các đặc trưng về cương độ bão mòn từ suối đốc và lòng suối rất cần thiết cho các huấn luyện xây dựng. Khi thiết kế và vận hành hồ chứa người ta quan tâm nhiều đến lượng và điều kiện lắng đọng vật chất trong sông. Sơ liệu này còn phục vụ cho giao thông đường thủy và các công trình do thi khác.

Thông thường các thông tin về dòng chảy rắn ít hơn so với thông tin về dòng chảy nước kể cả về số lượng lẫn chất lượng do hệ thống quan trắc và chất lượng dự cứ do chưa làm đầy đủ tin cậy cao.

Khi giải quyết một số bài toán thực tế thường dùng các phương pháp giải tiếp để tính toán dòng chảy rắn là phương pháp tương tự hoặc bồn đờ hoa. Giải tri trên bồn đờ hoa là đặc trưng độ deductions dòng sông S0 hoặc mò đun dòng phù sa lợp lửng Ms0 được xác định theo công thức:

\[S_0 = \frac{Q_{S0}}{Q_0} \times 10^3 \]

\[M_{S0} = \frac{Q_{S0}^{31.5.10^4}}{10^3.F} \]

với \(S_0 \) và \(M_{S0} \) - tương ứng là độ đun đặc trưng bình nhiều năm (g/m²) và mò đun dòng chảy phù sa lợp lửng trưởng bình nhiều năm (T/km².năm); \(Q_{S0} \) và \(Q_0 \) - lưu lượng trung bình nhiều năm của phù sa lợp lửng (kg/s) và nước (m³/s). \(F \) - diện tích lưu vực (km²).
Các nghiên cứu cho thấy các quá trình hình thành dòng chảy rắn được quan sát rõ ràng với những yếu tố cần được tính đến khi tính toán lực có cùng như không có quan trọng.

9.1. CÁC YÊU TỐ HÌNH THANH ĐỒNG CHAY RÁN

Các yếu tố chủ yếu hình thành dòng chảy rắn xác định được ở dòng chảy cơ bản bao gồm: 1) dòng chảy và môi đáy dòng chảy mặt; 2) độ dốc của sườn và đáy sông; 3) trạng thái bề mặt lưu vực và việc đổi thấm thực vật; 4) hoạt động kinh tế nhân sinh. Một nhóm thể hiện năng lực công phá của dòng chảy, nhóm kia là sức đề kháng của mặt đê. Phong cách của sự phát triển dòng chảy và hình thành dòng chảy rắn là các điều kiện khí hậu (địa hình) và phụ thuộc vào thời tiết, tính chất đất đá và các địa hình nhỏ. Trong số các điều kiện khí hậu thì dòng chảy mủa đông vai trò quan trọng, sau đó là chế độ thời tiết và gió, độ âm của dòng chảy.

Cực độ dòng chảy bể mặt lưu vực thể hiện rõ nhất vào mùa mưa lũ khi tính chất của mủa (cực độ, que mùa) quyết định vạt bìa tan đê ra khỏi bề mặt lưu vực và sau đó là các yếu tố mặt đê.

Mưa rào → tắc dòng cơ học vật lý lớn → vạt chất bìa khỏi bề mặt lưu vực nhiều → lượng xói mòn tăng. Mưa dần thì ngược lại.

Độ dốc lớn → vận tốc dòng chảy mạnh → năng lượng tái vật chất lớn → phù sa mang vào sông ngoài nhiều hơn, độ dốc nhỏ thì ngược lại.

Thảm thực vật đầy → ma sát lớn bề mặt lưu vực → lượng vật chất cuộn khỏi lưu vực giảm và ngược lại.

Kết cấu đất đá bền vững → xói mòn bề mặt nhỏ → vật chất ít bị bảo mòn → phù sa giảm. Khi có hoạt động kinh tế nhân sinh trên bề mặt lưu vực cấu trúc đất đai bị phá vỡ → xói mòn tăng → phù sa tăng.

Diễn tích lưu vực lớn → vật chất nhiều→ phù sa lớn và ngược lại.

9.2. TÍNH TOÁN ĐỒNG CHAY PHỤ SA

Các đặc trưng chung của dòng chảy rắn và các chỉ số của nó được xác định phù hợp với đặc trưng thiết kế.

Khi có quan trắc hệ thống không ít hơn 15-20 năm, các tham số dòng chảy rắn của phù sa lưu lượng được tính theo tài liệu do đắc thư vấn. Để đánh giá sơ bối độ tính cây của tài liệu gốc và tính hiệu quả của thời kỳ quan trắc, người ta thường phần tích quan hệ độ thì của lưu lượng phù sa trung bình Q₉₅ và lưu lượng nước năm Q₉₈. Chú ý được coi là có hiệu quả nếu các điểm tương thích bộ bối dòng dõi đều và phù hợp với thay đổi lưu lượng nước trong phạm vi tốt của chúng với suất đảm bảo từ 5-95% (hoặc 75%) và độ lệch của một vài điểm riêng biệt không vượt quá ±25% so với đường trung bình. Đối với sông sông có chế độ nước phức tạp với các điểm phân tần, cần có chuẩn độ đại lý nhỏ mới có thể có một quan hệ chế độ được. Quan hệ loài này xấp xỉ riêng cho mùa mưa và mùa khô theo số liệu lưu lượng trung bình tháng của phù sa và nước.

Nếu chuẩn là hiệu quả thì tham số dòng chảy năm của phù sa: lưu lượng phù sa trung bình nhiều năm, hệ số biến đổi và bất đối xứng của chúng được xác định theo phương pháp đồ giải - giải tích hoặc phương pháp momen với việc xây dựng các đường cong đảm bảo thực nghiệm và lý thuyết.

Với thời kỳ quan trắc dòng phù sa không hiệu quả khi mà lưu lượng nước thời kỳ đó sai khác với trị số trung bình nhiều năm trong giới hạn ± 20%, chuẩn dòng chảy phù sa xấp xỉ được tính theo công thức:

\[Q_{90} = \frac{Q}{Q_{95}} Q_{95} \]

(9.3)

131
với Q_0 và Q_{50} - lượng ứ chuyến lưu lượng và phù sa; Q_6 và Q_{50h} - lưu lượng nước và phù sa trung bình cho thời kỳ dòng quan trắc (n năm). Giá trị các hệ số biến đổi của lưu lượng phù sa lưu lượng C_v trong trường hợp này được xác định theo các quan hệ dựa phương hoặc tương tự, còn C_s lấy bằng $2C_v$.

Với các chuỗi quan trắc phù sa ngắn (ít hơn 15-20 năm) và có quan hệ lưu lượng phù sa và lưu lượng nước nấm và quan hệ thể hiện rõ biến đổi do động lượng nước, tính toán các tham số dòng chảy phù sa nấm được thực hiện bằng phương pháp độ giải bài quan hệ $Q_{50} = f(Q_s)$. Theo các quan hệ của lưu lượng nước và phù sa, khi biết lưu lượng nước trung bình nhiều năm tính được lưu lượng phù sa nhiều năm.

Các phương pháp thống kê để xác định các tham số tính toán của phù sa theo tài liệu quan trắc Q_{50} được coi là đủ nếu sai số lộ khác lượng phương đường $\sigma_{Q50} \leq 10 + 15\%$. Tính σ_{Q50} theo công thức ở phần trên và nếu Q_{50} được xác định bằng phương pháp độ giải thì giá trị σ_{Q50} được tính như sau:

$$ \sigma_{Q50} = \frac{100C_{ep/n}}{\sqrt{N}} \left[1 + \frac{1}{2} \left(\frac{n \sigma_{Q50}^2}{N \sigma_{Q50}^2} - 1 \right) \right], \quad (9.4) $$

với N - số năm quan dòng chảy nấm; n - số năm dòng quan dòng chảy nấm và phù sa; $C_{ep/n}$ - hệ số biến đổi phù sa lo lắng cho n năm; r - hệ số tương quan giữa các dòng lượng chảy nấm và phù sa; σ_{Q50} và σ_{Q50} - độ lệch phương dòng chảy nấm cho thời điểm n và tổng số N năm.

Tính biến đổi của dòng chảy phù sa nấm được tính với bằng động lồng hố với chuỗi ít hơn 50 năm hoặc biết lưu lượng phù sa với các thời điểm lượng nước khác nhau. Khi đó sử dụng chuỗi quan trắc hoặc tính toán lưu lượng và phù sa với có sự lặp lại thực tế giảm dần và chọn dòng chảy phù sa xác suất để đối với việc nhóm các năm có tận suất khác nhau.

Sử phân bố dòng chảy phù sa trong năm với chuỗi quan trắc không ít hơn 8-10 năm được xác định bằng cách tính các lưu lượng phù sa theo từng trung bình cho các năm đặc trưng: dòng chảy phù sa trung bình, lơn nhất và nhỏ nhất. Theo tài liệu các năm đó xác định các giá trị lưu lượng phù sa cho từng mùa.

Phân bố các giá trị độ độc nước trung bình ngày cho dưới dạng bảng, chưa có ngày có độ độc không vượt quá các giá trị sau: 50, 100, 200, 500, 1000, 2000, 10 000 và 50 000 g/m3.

Khi không đầy đủ tài liệu quan trắc để tính toán trực tiếp hoặc thiếu thông tin về mặt dưỡng và tham số của dòng chảy ran người ta xác định theo sông tương tự. Việc lựa chọn sông tương tự dựa trên việc phân tich và so sánh các yếu tố chủ đạo xác định sự hình thành dòng chảy phù sa hai sông. Các lưu vực cần có các giá trị độ độc, thổ, nhưng, độ che phủ, cát xoá ao hồ và độ dài lầy gần nhau. Kích thước diện tích lưu vực không kém nhiều nhất quá 3-5 lần. Độ cao lưu vực không kém nhiều quá 500 mét. Cùng nên tính đến cặp sự điều tiết dòng chảy do hồ chứa và các vùng vịnh... Tính toán bằng phương pháp sông tương tự cố đối tính tại lưu vực hai sông trên cả hai sông tiến hành khảo sát số bố một năm quan dòng chảy gốc các do đặc thú văn. Đặc trưng chính của dòng chảy ran là chuần dòng chảy phù sa lòng nấm của sông chưa nghiên cứu thường xác định theo bàn đó độ độc sông ngoài và bằng phương pháp phối số suy giữa các lưu vực đã nghiên cứu với giá trị dựa về trung tâm lưu vực:

$$ Q_{S0} = \frac{S_0 M_s F}{10^6} \quad (9.5) $$

với Q_{50} - lưu lượng trung bình nhiều năm của phù sa lòng nấm (chuan) kg/s; S_0 - độ độc trung bình nhiều năm của nước (chuan) g/m3; M_0 - mở đố dòng chảy trung bình nhiều năm của nước tại tuyến trung Đo l/skm2; F - diện tích lưu vực tính toàn, km2.

Ban thêm độ độc trên bàn đó mang tính giả định và kernel theo nó là dòng chảy ran. Khi nói suy cận tuân thủ các nguyên tắc về các yếu tố ảnh hưởng. Trong thực tế sử dụng bàn đó độ độc được xây dựng cho những lưu vực lớn và vĩa, không tính đến điều kiện trắc các lưu vực nên kết quả nur được thử tham thien bể.
Đồ đạc các sông nhơ thường cao hơn sông có tải liệu xây dựng trên bản đồ cho nên đứng bản đồ cần đưa thêm một hệ số hiệu chỉnh, xác định theo công thức:

\[S_{OM} = K_S S_0 \] \hspace{1cm} (9.6)

với \(S_0 \) - đồ đạc trung bình nhiều năm của nước sông trong vùng địa điểm xác định theo bản đồ; \(K_S \) - hệ số chuyển đổi.

Hệ số biến đổi dòng chảy năm của phù sa lở lũ sông các sông chưa nghiên cứu cũng xác định theo phương pháp sông tương tự nhưng cần tính đến các quan hệ địa phương.

Hệ số bất đối xứng các sông chưa nghiên cứu thường được lấy bằng hai lần giá trị hệ số biến đổi. Phù sa này thường chiếm không đáng kể so với phù sa lở lũ và thuộc không vượt quá 20% ở vùng đồng bằng; 30-35% ở vùng núi.

9.3. TÍNH TOÁN LÂNG Đong HỒ CHÚA

Khi tính toán lâng đồng hồ chứa và thời gian phục vụ cần có thể lượng phù sa lở lũ và phù sa đây do sông ngòi mang đến, xác định lượng vật chất do xói ngang mang đến từ bộ hồ chứa và các nhân tố lâng đồng khác.

Lượng phù sa từ bộ xác định bằng các đặc trung trắc địa bản đồ đơn thung lũng sông có hồ chứa, đất đá, vận tốc và hướng gió, sông trong hồ.

Căn làm rõ thành phần và lượng phù sa trắng tích ở đáy hồ để tính chế độ sông ngòi phù sa dưới đất, do không đủ phù sa đáy nên xảy ra xói mòn mạnh v.v..

Để đánh giá phần bờ phù sa trong lòng hồ cần có các thông tin về các giá trị và phân bố vận tốc dòng chảy trong hồ với các hạt phù sa lở lũ có độ lớn thay lúc cho trước.

Với điều kiện nhiều năm và hệ số điều tiết lớn thực hiện cần những tính toán độ khoảng hoà của nước với thang thành phần hoà học.

Để đánh giá gạn đúng thời điểm lâng đồng lâng đồng của hồ với trắng tích phù sa dựa theo các chu kỳ khác nhau sử dụng công thức:

\[T = \frac{W_n}{W_s (1 - \delta)} \] \hspace{1cm} (9.7)

với \(T \) - thời điểm lâng đồng trung bình của hồ (năm); \(W_n \) - thể tích chất của hồ; \(W_s \) - thể tích phù sa tổng trung bình nhiều năm; \(\delta \) - phần chuyển di của phù sa khỏi hồ chứa (%).

Giá trị \(W_s \) được tính theo công thức:

\[W_s = \frac{Q_{60} \times 10^3}{\beta} \] \hspace{1cm} (9.8)

\(\beta \) - mặt độ trung bình của trắng tích đây T/m³.

9.4. LỤ BÙN ĐÁ

Lụ bùn đá là dòng hỗ hợp nước và đất đá (60%) mạnh, ngăn với sức huỷ giải gồm trên các lưu vực sông nhỏ miệt núi. Lụ bùn đá xuất hiện khi có dòng chảy mạnh do mưa lớn, vùng hồ chứa trên các suối đây vật chất bị phong hóa.

Các yếu tố thuận lợi để xuất hiện lụ bùn đá là:

2. Sự xuất hiện trên các sườn, thung lũng và đầy sông một lượng lớn các vật chất rắn, bỏ rỗi - sản phẩm của xói mòn.

3. Xuất hiện mưa đột ngột với cường độ lớn nhưng lượng ít.

Thực vậy lũ bùn đã hay xuất hiện tại các lưu vực vùng núi vùng sa mà hay bán sa mà từ các lưu vực nhỏ có mưa lớn.

Cường độ xói mòn mạnh mẽ trên các lưu vực có lũ bùn đã là nhờ các yếu tố khí hậu, địa mạo lưu vực và các sườn. Khi xây ra lũ quét, một khối lượng lớn vật chất nằm trong trạng thái mắt cán bằng cho nên chỉ cần một tác động nhỏ (mưa lớn) là kéo theo một chuyển động lớn của khối vật chất đổ xuống phìa dưới và cuốn theo các vật chất mới trên quiero chuyển dòng và hình thành lũ bùn.

Lũ bùn đã có thể chứa tới 600 -1000 kg phù sa trên 1 m³ nước trong khi sông ngòi có độ đục cao chỉ có 150 kg/m³.

Thể tích bùn đã đmròm con lù mang theo có thể tính theo công thức:

\[W_\alpha = \omega_\alpha F = 1000 g(t)F, \] (9.9)

với \(W_\alpha \) - thể tích phù sa m³; \(\omega_\alpha \) - thể tích riêng lượng vật chất dựa ra m³/km²; \(g(t) \) - lởm bùn đmròm ra một lần, mm; \(F \) - diện tích lưu vực, km².

Giá trị gần đúng của thể tích bùn đmròm ra có thể tính theo công thức thể tích bình thường của lù có tính tới lượng phù sa:

\[W_\alpha = 1000Haf\beta_0, \] (9.10)

với \(H \) - lợp nước mra tạo lù, mm; \(\alpha \) - hệ số dòng chảy; \(F \) - diện tích lưu vực km²; \(\beta_0 \) - lượng thể tích phù sa trong một m³ nước. Giá trị \(H \) và \(\alpha \) lấy theo qui phạm tính mra lù.

Lũ bùn đmròm một hiện tượng tại biên thiên nhiên nguy hiểm nhưng chưa được nghiên cứu kỹ. Gần đây ở Việt Nam cũng xuất hiện nhiều lù quyết gây nhiều hậu quả nghiêm trọng cho đời sống và tan phá môi trường. Cần có sự quan tâm đúng mức để phòng chống, bảo vệ đời sống người dân, bảo vệ môi trường.
Mô hình hóa - đó là một phương pháp khoa học dạy hiểu luc giúp con người xâm nhập sâu vào bản chất của những hiện tượng tự nhiên hoặc xã hội phức tạp. Mục đích mô hình hóa là tạo dựng hiện tượng sao cho thống quan với việc nghiên cứu nó, con người thu nhận được những thông tin mới cần thiết. Nếu việc dựng hiện tượng được thực hiện bởi tập hợp các hệ thống toán học (phương trình - bất đẳng thức, điều kiện logic, toán tử...) chúng ta có mô hình toán hiện tượng đó.

Trong 30 năm gần đây, đã diễn ra sự phát triển sâu rộng việc mô hình hóa những hiện tượng và hệ thống tự nhiên khác nhau. Mô hình hóa động chạy cũng nằm trong trào lưu đó. Ở nhiều nước đã hoàn thành công việc đó số xuyên được các mô hình toán động chạy. Và để mô hình hoá động chạy được thảo luận trên nhiều hội nghị quốc tế. Số xuất bản về mô hình hoá động chạy đã lên đến con số vài trăm.

Một trong những vấn đề then chốt của tính toán thủy văn là luôn luôn đánh giá lượng động chạy ví một lý do nào đó không trực tiếp được đo được. Khí thiết kế hồ nước hoặc một hệ thống thủy lợi, ngành thủy văn luôn luôn phải đánh giá "chuỗi dòng chảy tương lai ra sao, bao gồm những tổ hợp nhóm năm nhiều nước, ít nước thê nào, khả năng dòng chảy cục đoạn là bao nhiêu v.v.... "Chì khi có lời giải cho những câu hỏi này, chúng ta mới có thể để tự xem mô hình, kích thước công trình cần xây dựng. Không phải ngoại ngày hiện mà hai nhà thủy lợi X. Việt nội tiến X.L. Kristky và M.F. Menkel đã phát biểu" bàn chải kinh tế nước này năm ngày trong quá trình dòng chảy". Nhà quản lý thủy lợi và hệ thống thủy lợi luôn luôn phải bàn khoán, "có thể chờ dòng chảy bằng bao nhiêu trong một vài ngày tới". Đựng đoán chính xác ngày năng cao dòng kể hiểu quả hoạt động của công trình. Điểm chung của các ván đề nêu trên là khả thủy văn luôn luôn phải đánh giá " có thể chờ đợi những gì ở tự nhiên?". Tóm lại, ta cần phải mô hình hoá những hiện tượng thủy văn.

10.1. PHÂN LOẠI MÔ HÌNH ĐỘNG CHÁY

Trên hàng trăm mô hình hình thành dòng chảy hiện hành, có thể thống nhất tách ra hai loại mô hình phân biệt: mô hình tất định và mô hình ngữ nghĩa. Sự phân biệt này cũng ngày nắng trong mục đích mô hình hoá: Chế tạo chuỗi dòng chảy trong tương lai phục vụ đầu tư tãn thiết kế hay dự báo ngàn hạn dòng chảy phục vụ đầu tư quản lý - điều khiển hệ thống thủy lợi.

10.1.1. Mô hình ngữ nghĩa

Quan niệm xác suất lăn đầu được Hazen đưa vào trong thủy văn từ năm 1914. Ngày nay, dòng chảy được coi là một quá trình ngẫu nhiên.

Với quan điểm này, trong cấu trúc các mô hình ngữ nghĩa không có các nhân tố hình thành dòng chảy và nguyên liệu để xây dựng mô hình chính là bạn thân hướng dòng chảy quá khổ, phải dự đoán để có thể bố lọc hết bẩn tính của mình. Sự thật, dòng chảy là hiện tượng ngữ nghĩa nhân tố. Từng nhân tố dòng chảy đến lượt mình lại là hàm của vở vận các nhân tố khác mà quy luật biến đổi của chúng con người chưa mô tả được.
Do vậy, trong kết cấu cuối cùng, tổng hợp của nó với các mối quan hệ tương hỗ phức tạp, dòng chảy biểu hiện là một hiện tượng nguồn nhân. Do tính ngẫu nhiên được thể hiện như nhảy hạt ở dòng chảy nàn và điều tiết như năm dòng chảy, lặp mô hình này hoàn toàn không đánh giá được khả năng phát sinh cùng những diễn biến dòng lực của quá trình, mà chủ yếu là sản sinh ra những thể hiện mới đầy đủ hơn của một quá trình nguyên nhân. Ngày nay, hình vẽ này của mô hình hoá dòng chảy được tác ra thành một chuyên ngành riêng của thủy văn dưới tên gọi- mô hình hoá thủy văn.

10.1.2. Mô hình tất định

Mộc dự bàn chất của dòng chảy là nguồn nhân, cùng thuận tiện tồn tại những giải đoạn hình thành dòng chảy, trong đó những thành phần tất định dòng chảy vài trò chủ yếu. Quá trình hình thành một trận lũ do mưa rào là một thí dụ minh họa. Như vậy, nếu những mô hình nguồn nhân là mô hình tạo cho dòng chảy thì mô hình tất định hình thành dòng chảy.

Trong việc mô hình hoá hình thành dòng chảy có hai cách tiếp cận:

1. Cách tiếp cận vật lý - toán: Bái toán biến đổi mura thành dòng chảy có thể được giải cho các khu vực nghiên cứu theo cách sau. Trên cơ sở phân tích tài liệu quan trắc mưa và dòng chảy cho nhiều lưu vực thuộc vùng đã lỡ - khí hậu khác nhau, tiến hành nghiên cứu chi tiết các hiện tượng vật lý tạo nên quá trình hình thành dòng chảy và xây dựng những quy luật tương ứng, được biểu diễn dưới dạng phương trình, các công thức toán v.v.. Nói chung, các phương trình, các công thức đều chỉ là các cách để biểu diễn ba quy luật chung nhất của vật chất trong trường hợp riêng cụ thể:

 a) Bảo toàn vật chất (phương trình liến tục hoặc cần bằng nước),
 b) Bảo toàn năng lượng (phương trình cần bằng dòng lực hay phương trình chuyển động thể hiện nguyên lý Dalberma),
 c) Bảo toàn dòng lượng (phương trình dòng lượng).

Sau đó, có các đặc trưng địa hình- thủy văn địa mạo lưu vực, độ ám ban đầu, quá trình mưa cùng các đặc trưng khí tượng, có thể trực tiếp biến đổi ngày quá trình mưa thành quá trình dòng chảy ở mặt cắt cửa ra lưu vực theo các phương trình và các công thức đã được thiết lập. Trong trường hợp tổng quát, những công thức được biểu diễn dưới dạng các phương trình vi phân đa hàm riêng thứ: Đặc trưng địa hình - thủy văn địa mạo lưu vực đồng vai trò các thông số phương trình (các hàm số hoặc trong trường hợp chung sẽ biến đổi theo thời gian) quá trình mưa cho chúng ta điều kiện biên, còn trạng thái lưu vực cho chúng ta điều kiện ban đầu. Hệ Saint - Venant cùng với những phương pháp số cụ thể giải nó cho ta một minh họa về cách tiếp cận này trong việc mô hình hoá giải đovalu cuối cùng cũng hình thành dòng chảy- giải đovalu chính trên bè mặt lưu vực và trong mảng lưu sông.

Linh vực này của mô hình hoá dòng chảy có những đặc thù và phương pháp nghiên cứu riêng biệt không thể thiều được những tài liệu nghiên cứu cơ bản cùng với những tài liệu nghiên cứu rất chi tiết và tồn kệm với địa hình, với các đặc trưng thủy văn địa mạo khu vực, các đặc trưng biên của mua theo không gian...

Khác từ sự dụng bộ tài liệu chi tiết về địa hình - địa mạo cùng các đặc trưng khác về lưu vực, chúng ta chỉ có một cách có lưu vực như là một hệ động lực. Và trong việc mô hình hoá sự hình thành dòng chảy, sự dụng cách tiếp cận số hoá.

2. Cách tiếp cận thông số hoá là cách tiếp cận thị trường dựa trên việc sử dụng tài liệu quan trắc dòng bộ giữa mưa và dòng chảy. Điều này cho phép lựa chọn các thông số của các biểu thức toán học theo tài liệu do đức.
Trong trường hợp này có thể có các thông số tập trung một điểm. Do đó những mô hình được xây dựng theo cách thông số hoá được gọi là mô hình các thông số tập trung.

Toán từ L₁ mô tả sự chuyển đổi có xét sự phân bố không đều theo không gian không nhưng của các đặc trưng lưu vực mà còn cả ham vào và ham ra. Đó là những mô hình có thông số cải (phân bố) hay được gọi là những mô hình vật lý - toán.

Các toản từ lưu vực không phụ thuộc hàm vào và hàm ra:
\[L(Q, q, t) \iff L(t) \]

từ đây có thể rút ra nguyên lý xếp chồng:
\[L(q_1(t)) + L(q_2(t)) = L(q_1(t)) + L(q_2(t)). \]
\[L(cq(t)) = cL(q) \]

Với những mô hình dùng, toan từ lưu vực không phụ thuộc vào thời gian:
\[L(Q, q, t) \iff L(Q, q) \]

Nếu mô hình tuynên tính đúng
\[L(Q, q, t) \iff L. \]

Đây là mô hình đơn giản nhất, được sử dụng trong trường hợp không có thông tin gì về các đặc trưng lưu vực.

Nhung mô hình có thông số tập trung (toan từ lưu vực dạng L₂) đên luật mình lại được chia làm hai loại: Mô hình "hợp den" và mô hình "quan niêm".

Mô hình "hợp den". "Hợp den" - thuật ngữ dùng trong điều kiện học để chỉ những hệ thống mà cấu tạo và các thông số của nó hoàn toàn không rõ ràng, chỉ có thể được xác định trên cơ sở những thông tin vào - ra. Trong thực tế sản xuất, đối với hệ thống tính lượng khi cần xây dựng những quan hệ mua - dòng chảy cũng chỉ có những quan trắc ở đầu vào (mua) đầu ra (đồng chảy) hệ thống. Những trường hợp này bước phải có lưu vực là một "hợp den". Tính trạng thái thông tin về lưu vực chỉ cho phép xây dựng những mô hình thở số nhất; khi xây dựng chúng người ta cũng hoàn toàn không có thông tin gì về lưu vực ngoài việc có nó là một hệ thống tuynên tính và đúng. Do vậy, trong thuyết vận: mô hình "hợp den" đang nghĩa với mô hình tuynên tính - đúng.

Lốp mô hình "hợp den" xuất hiện khá sớm vào thời kỳ đầu của sự phát triển mô hình thủy văn và đẳng. Ngày nay lốp mô hình này chỉ còn tồn tại với tư cách mô tả một giai đoạn cuối trong sự hình thành dòng chảy - giai đoạn chảy: giai đoạn biến đổi lốp cáp nước trên lưu vực thành dòng chảy ở cửa ra.
Mô hình quan niệm: Quá trình biên đạo mura thành dòng chảy - một quá trình phi tuyến phức tạp gồm nhiều giai đoạn. Cụng với sự phát triển của lý thuyết hình thành dòng chảy, mô hình quan niệm ra đời. Có thể đính nghĩa mô hình quan niệm là loại mô hình được mô tả bởi một tập hợp các quan hệ toán học, từng quan hệ biểu diễn từng mặt riêng của quá trình, nhưng kết hợp lại chúng mô hình hoá cả quá trình toàn vẹn. Voi sự xuất hiện của máy tính điện tử vào giữa những năm 50, lớp mô hình "hợp den" hoàn toàn lụi bước trước những mô hình "quản niệm" cho phép mô tả đầy đủ hơn, chính xác hơn quá trình "mura -dòng chảy" được hình thành từ hàng loạt các quá trình thành phần mura, bốc hơi, di truyền, thấm thực vật, nước thấm, chảy mất, sặt mất, ngầm... Ngày nay, có thể thấy hàng loạt các mô hình quan niệm rất phát triển như mô hình SSARR (Mỹ), TANK (Nhat), STANFORD - 4 (Mỹ), CLS (Ý), HMC (Liên Xô), SMART (Bắc Ailen), GIRARD - 1 (Pháp), v.v...

10.1.3. Mô hình động lực - ngoại niên

Trong những năm gần đây đã xuất hiện những xu hướng liên kết cách tiếp cận tất định và ngoại niên vào việc mô tả các hiện tượng thủy văn. Việc xét tình ngoại niên của các quá trình trong mô hình tất định diễn ra theo 3 phương hướng:

1. Xét sai số tính toán như một quá trình ngoại niên và trở thành một thành phần trong các mô hình tất định.

2. Sử dụng các mô tả xác suất - thống kê (lượng phân bố) của các tác động khi tương - thủy văn với tư cách là hàm vào của mô hình tất định.

3. Xét các quy luật phân bố xác suất theo không gian của tác động khi tương - thủy văn vào lưu vực.

Với những ý tưởng này đã hình thành những mô hình động lực - ngoại niên. Do sự phức tạp của vấn đề, lớp mô hình này mới chỉ ở giai đoạn đầu của sự khai sinh. Sự phân loại mô hình này trên được trình bày như trên hình 10.1

Hình 10.1. So sánh phân loại mô hình toàn - dòng chảy

Mô hình toàn dòng chảy

Mô hình tất định

Mô hình ngoại niên

Mô hình thống só tập trung

Mô hình thống só phân phối

Mô hình hợp den

Mô hình quan niệm

Mô hình vật lý - toàn

Mô hình dòng lực - ngoại niên

138
10.2. NHỮNG NGUYÊN LÝ CHUNG TRONG VIỆC XÂY DỰNG MÔ HÌNH "HỘP ĐEN" - LỚP MÔ HÌNH TUYỂN TÍNH ĐỨNG

Khi xây dựng mô hình "hộp đen" chúng ta hoàn toàn không có thông tin gì về các đặc trưng lưu vực cùng với những quá trình xảy ra trên nó ngoài giai đoạn: lưu vực là hệ thống tuyển tính - dùng. Cần làm sáng tỏ, trong những điều kiện nào có thể cơ lưu vực hoặc đoạn sông là hệ tuyển tính - dùng?

1. Như phân trên đã nêu, để đảm bảo nguyên lý "xấp chồng", cấu tạo hệ thống các đặc trưng của nó không được phụ thuộc vào hàm vào (tác động) và hàm ra (phân ứng). Điều này còn có nghĩa rằng: Các đặc trưng thủy địa mà lưu vực và đoạn sông (dổ đọc mặt nước, hệ số nam, tốc độ truyền lưu và thời gian chảy truyền) không được phụ thuộc vào lưu lượng nước. Như vậy hệ thủy văn không phải là tuyển tính, nhưng giai thuyết về tính tuyển tính của nó trong nhiều trường hợp tới ra rất hữu ích với tư cách là sự xấp xỉ ban đầu.

2. Nếu như thời gian của quá trình hình thành dòng chảy nhỏ hơn nhiều so với khoảng thời gian trong đó những đặc trưng của lưu vực hay đoạn sông có những thay đổi đáng kể thì cơ thể cơ lưu vực (doan sông) là một hệ động (với nghĩa là không thay đổi theo thời gian).

Trường hợp tốt nhất, hoạt động một hệ động lực tuyển tính - dùng được mô tả bởi những phương trình vi phân thường, liên hệ phân ứng hệ thống $Q(t)$ với tác động $q(t)$:

$$\alpha_n \frac{d^n Q}{dt^n} + \ldots + \alpha_1 \frac{dQ}{dt} + \alpha_n Q(t) = \beta_n \frac{d^n Q}{dt^n} + \ldots + \beta_1 \frac{dQ}{dt} + \beta_n Q(t)$$ (10.3)

Các hệ số α_i, β_i là các hàng số mô tả đặc trưng của lưu vực (doan sông).

Nhưng vậy, công cụ toán học để mô tả và phân tích những mô hình hộp đen là lý thuyết phương trình vi phân thường tuyển tính. Trong khi xây dựng các mô hình "hộp đen" về dòng chảy, các tác giả thường kết hợp sử mô tả toán học với sự tương tự vật lý thông qua các nguyên tố vật lý. Hai nguyên tố vật lý có bản nhất, có mật nhất trong các mô hình "hộp đen" khác nhau là: Bề chảy tuyển tính A_1 và kênh tuyển tính.

1. Bề chảy tuyển tính A_1 đó là bề chảy tương ứng cơ lưu lượng chảy ra tỷ lệ thuận với thể tích nước trong đó:

$$Q = C_iW_i$$ (10.4)

Như sẽ thấy rõ sau này, hoạt động của bề chảy tuyển tính luôn luôn có được sự mô tả bởi toàn từ cơ bản có dạng:

$$A_i = a_i \frac{d}{dt} + b_i ,$$ (10.5)

trong đó, a_i và b_i là các đặc trưng của bề chảy. Một bề chảy tuyển tính có thể có một hoặc vài cửa vào, một hoặc vài cửa ra. Các mô hình dòng chảy khác nhau cũng một phần do sự kết hợp khác nhau của bề chảy tuyển tính.

2. Kênh tuyển tính: đó là kênh tương ứng có chiều dài x với thời gian chảy truyền t không đổi với môi cấp lưu lượng Q. Như vậy, khi lan truyền trên kênh tuyển tính, hình dạng đường qua hình lưu lượng không bị biến dạng. Có nghĩa, nếu hàm vào $q = f(t)$, thì hàm ra:

$$Q = f(t-\tau).$$
Bề truyền tính có tác dụng làm biến dạng (bết) sóng lũ, kênh truyền tính có tác dụng dịch chuyển sóng lũ. Do là hai nguyên tố cơ bản nhất tạo nên mô hình khác nhau. Trong mô hình của Dooge J.C.I., các bề truyền tính và các kênh truyền tính được mặc kín thể từng đối một.

Diện tích lưu vực được chia thành n phân bội các đường đằng đối. Từng diện tích bộ phận được coi là một cặp kênh truyền tính và bề truyền tính. Như vậy, lượng nước đến bề thứ i gồm 2 bộ phận: dòng chảy từ bề (i-1) qua kênh truyền tính vào bề i và lượng mưa rơi trực tiếp xung quanh bề i. Mô hình của Dooge trực tiếp hoàn thiện mô hình của Nash.

Khi xây dựng mô hình, tùy thuộc vào khả năng điều tiết của lưu vực cũng như các cảm nhận tính tế của người xây dựng, để quyết định số bề chứa, kiến kết hợp giữa chúng và với các kênh truyền tính. Nên lưu ý lựa chọn cấu trúc đơn giản nhất mà vẫn đảm bảo độ chính xác. Sự phục hồi họ mô hình đợi khi tổ ra thừa và dân đến lưu thích sai số tính toán. Trong việc xác định bộ thông số, mô hình phục hồi, nhiều thông số, sẽ thường gặp phải hiệu ứng "rã quả kẹp" khi xây dựng mô hình, hoàn toàn có thể sử dụng các loại bề chứa phi truyền và kênh phi truyền. Trong mục này chỉ trình bày những kỹ thuật cơ bản nhất của việc xây dựng lớp mô hình truyền tính - đúng.

10.2.1. Một số cấu trúc mô hình truyền tính cơ bản

1. Để mô phỏng tác dụng điều tiết của lòng sông trên doan sông có lượng nhập khẩu giữa, người ta sử dụng kỹ thuật mức nước tiếp các bề truyền tính.

![Hình 10.2](https://via.placeholder.com/150)

Hình 10.2. Số độ mức nước tiếp các bề truyền tính

Hoa hoạt của bề truyền tính này được mô tả bởi phương trình vi phân dạng:

\[
\frac{dW_i}{dt} = Q_{i-1} + q_i - Q_i - R_i.
\]
(10.6)

Các lưu lượng ra khỏi bề tỷ lệ thuận với lưu lượng nước trong bề:

\[
Q_i = C_i W_i
\]
(10.7)

\[
R_i = \gamma_i W_i
\]
(10.8)

Từ (11.7) và (11.8) ta có

\[
\frac{dW_i}{dt} = \frac{1}{c_i} \frac{dQ_i}{dt}
\]
(10.9)

\[
R_i = \frac{\gamma_i Q_i}{c_i}
\]
(10.10)

Thay (10.9), (10.10) vào (10.6), ta có:

\[
a_i \frac{dQ_{i-1}}{dt} + b_i Q_i = Q_{i-1} + q_i \quad i = 1,2,\ldots,n
\]
(10.11)
với \(a_i = \frac{1}{c_i}, \quad b_i = 1 + \frac{\gamma_i}{c_i}. \)

Quá trình truyền lũ trên đoạn sông được mô tả bởi hệ n phương trình vi phân:
\[
\begin{align*}
 a_1 \frac{dQ_1}{dt} + b_1 Q_1 &= Q_0 + q_1 \\
 a_2 \frac{dQ_2}{dt} + b_2 Q_2 &= Q_1 + q_2 \\
 &\vdots \\
 a_n \frac{dQ_n}{dt} + b_n Q_n &= Q_{n-1} + q_n.
\end{align*}
\]

Hệ (10.12) tương đương với một phương trình vi phân bậc n. Để đạt được điều đó, ta tiến hành như sau: Giải phương trình thứ hai trong hệ đổi với \(Q_1 \), lấy đạo hàm của nó, thay \(Q_1 \) và \(\frac{dQ_1}{dt} \) tìm được vào phương trình thứ nhất sẽ có:
\[
Q_2 = Q_0 + q_1 + a_1 \frac{dQ_1}{dt} + b_1 q_1.
\]

Hệ (10.12) tương đương với một phương trình vi phân bậc n. Để đạt được điều đó, ta tiến hành như sau: Giải phương trình thứ hai trong hệ đổi với \(Q_1 \), lấy đạo hàm của nó, thay \(Q_1 \) và \(\frac{dQ_1}{dt} \) tìm được vào phương trình thứ nhất sẽ có:
\[
\begin{align*}
 a_1 a_2 \frac{d^2Q_2}{dt^2} + (a_1 b_2 + a_2 b_1) \frac{dQ_2}{dt} + b_1 b_2 Q_2 &= Q_0 + q_1 + \ldots + a_1 \frac{dq_2}{dt} + b_1 q_2.
\end{align*}
\]

Hệ (10.12) tương đương với một phương trình vi phân bậc n. Để đạt được điều đó, ta tiến hành như sau: Giải phương trình thứ hai trong hệ đổi với \(Q_1 \), lấy đạo hàm của nó, thay \(Q_1 \) và \(\frac{dQ_1}{dt} \) tìm được vào phương trình thứ nhất sẽ có:
\[
\begin{align*}
 a_1 a_2 \frac{d^2Q_2}{dt^2} + (a_1 b_2 + a_2 b_1) \frac{dQ_2}{dt} + b_1 b_2 Q_2 &= Q_0 + q_1 + \ldots + a_1 \frac{dq_2}{dt} + b_1 q_2.
\end{align*}
\]

Hệ (10.12) tương đương với một phương trình vi phân bậc n. Để đạt được điều đó, ta tiến hành như sau: Giải phương trình thứ hai trong hệ đổi với \(Q_1 \), lấy đạo hàm của nó, thay \(Q_1 \) và \(\frac{dQ_1}{dt} \) tìm được vào phương trình thứ nhất sẽ có:
\[
\begin{align*}
 a_1 a_2 \frac{d^2Q_2}{dt^2} + (a_1 b_2 + a_2 b_1) \frac{dQ_2}{dt} + b_1 b_2 Q_2 &= Q_0 + q_1 + \ldots + a_1 \frac{dq_2}{dt} + b_1 q_2.
\end{align*}
\]

Hệ (10.12) tương đương với một phương trình vi phân bậc n. Để đạt được điều đó, ta tiến hành như sau: Giải phương trình thứ hai trong hệ đổi với \(Q_1 \), lấy đạo hàm của nó, thay \(Q_1 \) và \(\frac{dQ_1}{dt} \) tìm được vào phương trình thứ nhất sẽ có:
\[
\begin{align*}
 a_1 a_2 \frac{d^2Q_2}{dt^2} + (a_1 b_2 + a_2 b_1) \frac{dQ_2}{dt} + b_1 b_2 Q_2 &= Q_0 + q_1 + \ldots + a_1 \frac{dq_2}{dt} + b_1 q_2.
\end{align*}
\]

Hệ (10.12) tương đương với một phương trình vi phân bậc n. Để đạt được điều đó, ta tiến hành như sau: Giải phương trình thứ hai trong hệ đổi với \(Q_1 \), lấy đạo hàm của nó, thay \(Q_1 \) và \(\frac{dQ_1}{dt} \) tìm được vào phương trình thứ nhất sẽ có:
\[
\begin{align*}
 a_1 a_2 \frac{d^2Q_2}{dt^2} + (a_1 b_2 + a_2 b_1) \frac{dQ_2}{dt} + b_1 b_2 Q_2 &= Q_0 + q_1 + \ldots + a_1 \frac{dq_2}{dt} + b_1 q_2.
\end{align*}
\]
2. Để mô tả tác dụng điều tiết lưu vực thường sử dụng kỹ thuật làm nổi tiếp - song song n bề tuyến tính, tương trưng cho các tầng đất đạn nước khác nhau:

\[Q_0 = R_0 \] - lượng cấp nước trên bề mặt lưu vực.

\[Q = \sum_{i=1}^{n} Q_i \] - lưu lượng nước tại mặt cắt của ra lưu vực.

\(R_i \) - lưu lượng ra tại bề \(A_i \), nhưng vào bề \(A_{i+1} \) tương trưng cho sự thẩm.

\(Q_i \) - lưu lượng ra khỏi bề \(A_i \) tương trưng cho dòng chảy mặt.

Hoạt động của từng bề \(A_i \) được mô tả bởi phương trình:

\[
\frac{dW_i}{dt} = R_{i-1} - Q_i - R_i
\]

(10.19)

\[Q_i = C_i W_i \]

\[R_i = \gamma_i W_i \]

(10.20)

Hình 10.3. Sơ đồ mạch nước tiếp - song song các bề

Quá trình điều tiết trên toàn lưu vực được mô tả bởi hệ phương trình tuyến tính:

\[
a_i \frac{dQ_i}{dt} + b_i Q_i = Q_{i-1} \quad i = 1, 2, 3, \ldots, n
\]

(10.21)

\[
a_i = \frac{1}{c_i} , \quad b_i = \frac{c_i + \gamma_i}{c_i} \ \text{với} \ \ a_i = \frac{c_{i-1}}{c_i \gamma_i} , \quad b_i = \frac{c_{i-1} (c_i + \gamma_i)}{c_i \gamma_i}.
\]

(10.22)

Như vậy tương tự thuật toán đã trình bày ở trên có thể viết:
Nhận hai vế của (n-1) phương trình đầu của (10.23) với toán tử dạng:

\[
\prod_{k=1}^{n} \left(a_k \frac{d}{dt} + b_k \right) Q_i = Q_0
\]

rồi tiến hành công tát cả. Phương trình (10.23) sẽ có:

\[
\prod_{k=1}^{n} \left(a_k \frac{d}{dt} + b_k \right) (Q_1 + Q_2 + \ldots + Q_n) = \\
\prod_{k=2}^{n} \left(a_k \frac{d}{dt} + b_k \right) + \prod_{k=3}^{n} \left(a_k \frac{d}{dt} + b_k \right) + \ldots + \left(a_n \frac{d}{dt} + b_n \right) + 1
Q_0
\]

Nhưng vi: \(Q = \sum_{i=1}^{n} Q_i \) ta có:

\[
\prod_{k=1}^{n} \left(a_k \frac{d}{dt} + b_k \right) Q = \sum_{j=1}^{n-1} \prod_{k=1}^{n} \left(a_k \frac{d}{dt} + b_k + 1 \right) Q_j.
\]

Trong việc mô phỏng sự diệu tiết của lưu vực do môi quan hệ (10.22), các bể chỉ có thể tương tự nhau từ bể thứ hai trở đi:

\[a_i = a; \ b_i = b \ i = 2,3,\ldots, n.\]

Trong trường hợp này:

\[
\left[a_1 \frac{d}{dt} + b_1 \right] (a \frac{d}{dt} + b^n - j) \tilde{Q} = \sum_{j=1}^{n} (a \frac{d}{dt} + b^n - j) Q. \quad (10.25)
\]

10.2. Hơn ảnh hưởng. Biểu thức toàn học lợp mở hình tuyến tính

Từ lý thuyết phương trình vi phân tuyến tính tính đạo hàm thường thấy rằng nghiệm của phương trình (10.3) thỏa mãn những điều kiện ban đầu: \(Q(t_0) = Q_0, Q'(t_0) = \ldots = Q^{(n-1)} \) có thể biểu diễn dưới dạng:

\[
Q(t) = \tilde{Q}(t) + Q^*(t) \quad (10.26)
\]

trong đó:

\(\tilde{Q}(t) \) - nghiệm của phương trình thuận nhất.
\(Q^* (t)\) - nghiệm riêng của phương trình không thuận nhất thỏa mãn điều kiện ban đầu bằng 0.

\[
Q(t_0) = Q'(t_0) = Q^{(n-1)}(t_0) = 0.
\]

Do tính chất tuyến tính \(Q(t)\) có thể biểu diễn dưới dạng một tổng hợp tuyến tính của \(n\) nghiệm riêng của phương trình thuận nhất.

\[
\tilde{Q}(t) = \sum_{k=1}^{n} C_k Q_k (t)
\]

(10.27)

trong đó \(C_k\) - các hàng số được xác định bởi điều kiện ban đầu qua việc giải hệ phương trình đại số tuyến tính sau:

\[
\begin{align*}
C_1 Q_1 (t_0) + C_2 Q_2 (t_0) + \ldots + C_n Q_n (t_0) &= Q_0 \\
C_1 Q_1' (t_0) + C_2 Q_2' (t_0) + \ldots + C_n Q_n' (t_0) &= Q'_0 \\
& \quad \quad \quad \quad \quad \quad \ldots \quad \ldots \ldots \ldots \ldots \ldots \ldots \quad \ldots \quad \ldots \quad \ldots \\
C_1 Q_1^{(n-1)} (t_0) + C_2 Q_2^{(n-1)} (t_0) + \ldots + C_n Q_n^{(n-1)} (t_0) &= Q_0^{(n-1)}
\end{align*}
\]

(10.28)

Định thức ma trận hệ số về trái là định thức Vronski tại \(t_0\):

\[
\Delta = \begin{vmatrix}
Q_1 (t_0) & Q_2 (t_0) & \ldots & Q_n (t_0) \\
Q_1' (t_0) & Q_2' (t_0) & \ldots & Q_n' (t_0) \\
Q_1^{(n-1)} (t_0) & Q_2^{(n-1)} (t_0) & \ldots & Q_n^{(n-1)} (t_0)
\end{vmatrix}
\]

(10.29)

Do các nghiệm \(Q_i (t)\) (\(i=1,2,\ldots,n\)) độc lập tuyến tính nên hệ luôn luôn tồn tại một nghiệm duy nhất có thể xác định theo công thức Crame:

\[
C_k = \frac{\Delta_k}{\Delta}
\]

trong đó \(\Delta_k\) là định thức nhân được từ định thức Vronski sau khi thay cột thứ \(k\) trong (10.29) bằng cột các điều kiện ban đầu:

\[
\begin{vmatrix}
Q_0 \\
Q'_0 \\
\ldots \\
Q_0^{(n-1)}
\end{vmatrix}
\]

Trong toán học đã chứng minh, với điều kiện ban đầu bằng 0, phương trình phụ trợ của (10.3) có dạng:

\[
Q(P) = \frac{L_0(P)}{L_n(P)} q(P)
\]

(10.30)

trong đó: \(P = a + ib\) (\(a>0\)) - một số phức;

\[
\begin{align*}
L_0 (P) &= \alpha_0 P^n + \alpha_{n-1} P^{n-1} + \ldots + \alpha_1 P + \alpha_0 \\
L_n (P) &= \beta_0 P^n + \beta_{n-1} P^{n-1} + \ldots + \beta_1 P + \beta_0 \\
Q(P) &\Rightarrow Q(t) \text{ và } q(P) \Rightarrow q(t)
\end{align*}
\]

có nghĩa là \(Q(P)\) và \(q(P)\) là các tạo hình của \(Q(t)\) và \(q(t)\) nhận được bằng biến đổi Laplace.
\[Q(P) = \int_0^\infty e^{-P \tau} Q(t) d\tau \]

\[q(P) = \int_0^\infty e^{-P \tau} q(t) d\tau . \]

Hàm \(P(P) = \frac{L_B(P)}{L_a(P)} \) được gọi là hàm truyền, và (10.30) được viết dưới dạng:

\[Q(P) = P(P).q(P) \quad (10.31) \]

Từ (10.31) suy ra:

\[Q(P) \to \int_0^i P(t - \tau)q(\tau)d\tau \]

và theo định lý về nguyên bản duy nhất ta có:

\[Q(t) = \int_0^i P(t - \tau)q(\tau)d\tau \quad (10.32) \]

Biểu thức (10.32) được gọi là tích phân Duhamel và do cùng chính là nghiệm riêng của phương trình vi phân tuyến tính không thuận nhất với các điều kiện ban đầu bằng 0.

\[Q^*(t) = \int_0^i P(t - \tau)q(\tau)d\tau \quad (10.33) \]

Hàm \(P(t - \tau) \) trong (10.32) được gọi là hàm ảnh hưởng và là nguyên bản của hàm truyền \(P(P) \):

\[P(t) \leftarrow \frac{L_B(P)}{L_a(P)} = P(P) . \]

Trong quá trình xây dựng mô hình hàm truyền \(P(P) \) luôn luôn có thể xác định được dễ dàng và sau đó sử dụng bằng tra tảo hình - nguyên bản của phép biến đổi Laplace để xác định hàm ảnh hưởng \(P(t) \).

Mô hình hàm truyền tính đều có dạng chung là:

\[Q(t) = \sum_{i=1}^n \frac{\Delta}{\Delta}Q(t) + \int_0^i P(t - \tau)q(\tau)d\tau \quad (10.34) \]

Biểu thức (10.34) là dạng tổng quát của tất cả mô hình "hợp den". Các mô hình "hợp den" được phân biệt với nhau bởi:

1. Đạng giải tích hàm ảnh hưởng \(P(t - \tau) \);
2. Cách xác định hàm ảnh hưởng;
3. Cách xét \(Q(t) \).

Với chức năng của mình mô hình "hợp den" mô tả quá trình chảy điều tiết của dòng dán lưu vực với những tăng đột khác nhau. Do vậy ngày nay mô hình "hợp den" là bộ phận không thể thiếu được trong các mô hình "quan niệm" sự hình thành dòng chảy.

10.3. GIỚI THIỆU CÁC MÔ HÌNH HỢP DEN TRONG TÍNH TOÁN THỦY VĂN

10.3.1. Mô hình Kalinhin - Miuliakóp - Nash

Năm 1958, khi nghiên cứu sự lan truyền sóng xã ở hạ lưu các tràm thủy điện, G.P.Kalinhin và
P.I. Miulakov đã chia đoạn sông ra n đoạn nhỏ dưới tên gọi "các đoạn sông đặc trưng".

Các đoạn sông đặc trưng được chọn có độ dài sao cho tồn tại môi quan hệ dòng truy tinh giữa lượng nước trong nó với lưu lượng chảy ra.

Nếu vậy thực chất "doạn sông đặc trưng" là một hệ tuyền tính, mà cơ chế hoạt động được mô tả bởi:

\[\frac{dW_i}{dt} = Q_{i-1} - Q_i \]

\[W_i = r_i Q_i \]

trong đó \(r_i \) - thông số mang ý nghĩa thời gian chảy tuyền trên "doạn sông chảy tuyền đặc trưng thứ \(i \)".

Hai phương trình trên tương đương với một phương trình:

\[r_i \frac{dQ_i}{dt} + Q_i - Q_{i-1}. \]

Nếu vậy toàn từ \(A_i \) trong trường hợp này có dạng:

\[A_i = \tau_i \frac{d}{dt} + 1 \text{ với } a_i = \tau_i, b_i = 1. \]

Mặc nói tiếp n "doạn sông đặc trưng" tương tự nhau, phương trình (10.17) trở thành:

\[\left(\tau_i \frac{d}{dt} + 1 \right)^n Q = Q_0 \text{ với } \tau = \tau_1 \text{ và } b_i = 1. \]

Các nghiệm riêng của phương trình thuận nhất có dạng:

\[Q_i(t) = t^{a_i} e^{-\frac{t}{\tau_i}}, \]

và hàm ảnh hưởng trở thành:

\[P(t) = \left(\frac{1}{\tau_i (a_i - 1)!} \right) \left(\frac{t - \tau}{\tau_i} \right)^{a_i - 1} e^{-\frac{t - \tau}{\tau_i}}. \quad (10.35) \]

Công thức tương tự cũng được Nash tìm ra khi giải thiết rằng lưu vực được cấu tạo từ n bể chứa tuyền tinh với quan hệ dòng truy - tuyền tinh giữa thể tích nước và lưu lượng.

Nếu đã phân tích, hàm ảnh hưởng Kalinich - Miuliacop - Nash có hai thông số \(n \) và \(\tau \) là trường hợp riêng của hàm ảnh hưởng 3 thông số. Việc đưa thêm thông số \(b \) vào làm hàm ảnh hưởng "đeo" hơn, ngoài việc để thích nghi với việc xét tác dụng điều tiết của lòng sông, còn khả năng xét được cần can nước (các tôn thất bốc hơi, mặt nước...).

10.3.2. Đường lưu lượng đơn vị

Phương pháp lần đầu tiên do Sherman đề nghị vào năm 1932, sau này được nhiều tác giả khác phát triển và hoàn thiện. Nội dung của phương pháp dựa trên 3 luận điểm:

a. Đường quá trình lưu lượng, được hình thành từ lượng mực biểu quá 1 din (25,4 mm) roi đều trên kinh lưu vực trong một đoạn vị thời gian, là đặc trưng không đổi của một kinh lưu vực. (Đường quá trình đó được gọi là đường lưu lượng đơn vị).

b. Đường quá trình lưu lượng, được hình thành từ n din roi đều trên kinh lưu vực trong một đoạn vị thời gian, có thể nhận được bằng cách nhân từng độ đường lưu lượng đơn vị với n.
10.4. NGUYỄN LÝ XÂY DỰNG MÔ HÌNH "QUAN NIỆM" ĐỒNG CHÂY

Cách tiếp cận trong việc xây dựng mô hình "quan niệm" là cách tiếp cận thông số hoá:
1. Cho đầy các số liệu quan trắc về mực X(t) và đồng chảy ở mỗi cốt của mực lưu vực Q(t).
2. Căn tính toán từ chuyên đổi tốt nhất từ mực ra đồng chảy.
Câu trúc của toàn tự cùng các thông số của nó, nói chung là không có sẵn.
Tuy nhiên, trong học thuyết đồng chảy đã có những cơ sở lý thuyết và thực nghiệm về sự hình thành đồng chảy nói chung và trên 1 số lưu vực cụ thể. Điều đó dẫn đến hình thành 1 số thông tin về các lôp toàn từ can thiệp cùng phần vì biến đổi các thông số của chúng (ly thuyết thấm, tích động, ảnh hưởng của rìng, đồng chảy sông mềm, chảy ngầm v.v.).
Xây dựng mô hình gồm 2 giai đoạn:
- Thiết lập câu trúc mô hình
- Xác định thông số mô hình

10.4.1. Xây dựng câu trúc mô hình

Đây là quá trình xác định những quan hệ toàn học mô tả diễn biến hiện tượng.
Trong công việc này, nhà mô hình phải làm những xác định, hiểu rõ những tác động chính đến diễn biến hiện tượng và có tri thức tương đương phong phú để khám phá hoá hiện tượng. Khi thiết lập câu trúc mô hình chính đồng chảy, cần phải thỏa sức độ khó về tọa điểm quan trọng các sự tác động trong hồ giả chúng.
Nói chung, sự hình thành dòng chảy trên các lưu vực cụ thể rất khác nhau, do vậy không có một mô hình và phương pháp thống nhất cho tất cả mọi trường hợp. Nhìn chung mô hình phải nhằm vùng hiện tượng cụ thể để có sự cải biến cần thiết.

Nói chung, khi thiết lập mô hình hình thành dòng chảy cần để cấp và giải quyết những vấn đề sau:

1. Vấn đề mực trên lưu vực (haram vào): có cần hiểu chính số liệu mực tại các điểm đó (bằng thử nghiệm hoặc may tự ghi)? Nếu cần, cách hiểu chính. Có cần hiểu chính sự phân phối không đều của mực theo không gian? Nếu cần, cách hiểu chính?

2. Vấn đề tổ thạch do thẩm thúc vật, do tích động trên mặt lưu vực, do thẩm, cách xét tác động của độ ẩm ban đầu. Những giả thiết nào về diện biến quá trình thẩm, có xét đến đặc tính của tầng thổ nhưng? Nếu có, như thế nào?

3. Có xét đến tổ thạch do bốc hơi? Nếu có, cách xét (ví dụ chỉ tiệt nào xét đến các yếu tố khí tượng: tốc độ gió, nhiệt độ không khí, độ thể hüt bảo hóa v.v...).

4. Cách tách quá trình dòng chảy ngầm ra khỏi dòng chảy tổng cộng tại mặt cắt của ra lưu vực?

5. Có xét dòng chảy sát mặt (nếu có, cách xét)? Có xét lượng nước hồi quay từ tầng thổ nhưng vào sông?

6. Có xét tính hướng dòng chảy không phải được hình thành(len toàn bộ diện tích lưu vực (có những chớp trùng khép kín) nếu có, bảng cách tính diện tích hiệu quả?

7. Cách xét chuyển dòng sông lưu trong mạng sông-sũ giao thoa của sông lưu trên dòng chính với các sông nhân, sự kết sông lưu v.v...

8. Bằng cách nào xét được một phổ phân trên đường quá trình lưu lượng được gây ra bởi lượng nước tồn tại của trận lưu trước v.v...

Giải quyết những vấn đề nêu trên, thiết lập những công thức mô tả quá trình, dòng thời lưu luôn phải suy xét: Những đại lượng nào trong các công thức cho đủ các dạng những giả thiết số xác định, những đại lượng nào có thể được tính theo những công thức vật lý và những đại lượng nào dòng vai trò thể số cần phải xác định nhờ những tài liệu quan trắc v.v... ra. Chi sau khi giải quyết những vấn đề nêu trên mới có thể thiết lập một cấu trúc của mô hình. Căn chú ý rằng mỗi mô hình toàn dòng chảy là một định lượng tổng mạnh, các quá trình thành phần liên quan với nhau một cách thể hiện và hệ cơ, do vậy xét ảnh hưởng của một quá trình nào đó đến dòng chảy chỉ có thể làm được sau khi đã xây dựng trên mô hình. Ngoài ra các phần nhớ tổ hình thành dòng chảy rất biết đến không gian. Nếu có cơ chế hoạt động và số liệu quan trắc của một quá trình nào đó tại một điểm, thì không thể chuyển ra lương cho toán khu vực (Vai trò của từng quá trình thành phần biên đối từ điểm này sang điểm khác, từ lưu vực này sang lưu vực khác). Điều này dẫn đến việc lựa chọn cấu trúc mô hình quan niệm mang tính mô mềm, cảm nhận. Điều này cũng kết nghĩa với sao việc lựa chọn kết quả nghiên cứu hiện đại về từng quá trình thành phần (mưa, thẩm, bốc hơi, diệm trọng, dòng mật, sát mật, ngấm v.v...) của nhiều tác giả khác nhau để mộc có được một mô hình tốt đã thất bại. Điều này cũng cho thấy việc sao các mô hình quan niệm khác xa nhau cả về cấu trúc lẫn số liệu ban đầu sử dụng.

Do vậy việc xây dựng mô hình mang dạy tính sáng tạo cùng với việc am hiểu trường tận hiện tượng trên từng lưu vực cụ thể.

10.4.2. Xác định thông số mô hình

Các mô hình thông số tập trung đều chứa đựng nhiều thông số cần được xác định trên cơ sở những tài liệu quan trắc v.v-ra của hệ thống. Về mặt toán học, có hai phương trình thiết lập thông số mô hình:
phương pháp tối ưu hoá và phương pháp giải bài toán ngụy. Phương pháp thường được trong thực tế hiện nay là khử-sai được coi là phương án tốt số nhất của phương pháp tối ưu hoá.

1. Phương pháp tối ưu hoá. Đây là bài toán thuận, cho biết tổng số vào và bỏ thông số mô hình, cần xác định hàm ra của hệ thống. Thức chất tối ưu hoá là bài toán kiểm hiệu hệ thống. Mục tiêu kiểm hiệu là hàm ra phải đúng với tín hiệu do tác, còn biến điều khiển là chính xác thông số mô hình.

Cần phải xác định điều trước toán học của mục tiêu:

$$K = \sum_{i=1}^{n} \left[Q(t) - Q_i(t, a) \right]^2 fQ(t)dt \rightarrow \min$$

trong đó: n - tổng số trạng lười, T - thời gian một trạng lữ, $Q(t), Q_i(t, a)$ - các quá trình do tác và tính toán, $a=(a_1, a_2, \ldots, a_m)$ - vec nước thông số mô hình.

a) Nguyên tắc lựa chọn số liệu. Trong quá trình tối ưu, một số thông số tỏ ra không ảnh hưởng gì tới hàm mục tiêu. Nguyên nhân chính của hiện tượng này là trong những số liệu dùng để tối ưu, chưa có những số liệu xác định rõ ràng và rõ ràng của các thông số. Để khắc phục tình trạng này, những số liệu dùng trong quá trình tối ưu phải bao gồm những trạng lữ có điều kiện hình thành hết sức khắc nhau: đủ lớn, đủ nhỏ, đủ đúng. Độ chính xác của các thông số phụ thuộc nhiều vào độ chính xác, mức đai biết và khối lượng của những tài liệu ban đầu. Những trạng lữ không đủ tin cậy sẽ gây ra những sai lệch đáng kể cho từng thông số riêng biệt. Do vậy, để tối ưu phải chọn những trạng lữ có độ tin cậy cao nhất.

b) Nguyên tắc tiến hành: có hai cách tiến hành quá trình tối ưu:

Cách 1: Tối ưu riêng rẽ từng trạng lữ, được các bộ thông số khác nhau, sau đó lấy bộ thông số trung bình cho tất cả các trạng.

Cách 2: Tiến hành tối ưu đồng thời cho nhiều trạng lữ, được một bộ thông số chung cho tất cả các trạng lữ. Kinh nghiệm cho thấy hai cách tối ưu này cho kết quả rất khác nhau. Với từng trạng lữ, luôn luôn tìm được một thông số thích hợp. Do đặc thù riêng của từng trạng lữ, một số thông số có thể bị sai lệch. Điều này dẫn đến các bộ thông số của các trạng lữ rất khác nhau. Để đảm bảo y nhất của các thông số, đảm bảo độ bền vững, ổn định của chúng, để tối ưu phải sử dụng nhiều trạng lữ. Kinh nghiệm cho thấy số liệu dùng để tối ưu không ít hơn 5 quá trình đồng chảy khác nhau.

c) Nguyên tắc phức tạp hóa đàn mô hình, do giáo sư Kuchmen đề ra. Thực chất của nó là việc tối ưu hóa được tiến hành theo từng giai đoạn. Trong bộ thông số mô hình, trọng lượng của từng thông số không đồng đều nhau, tính chất của các thông số cũng không giống nhau, có thông số ảnh hưởng tới dinh, có thông số chi ảnh hưởng đến tổng lượng, có thông số ảnh hưởng tới nhánh lên, có thông số ảnh hưởng tới nhánh xuống... Thật sai làm nếu đưa tất cả những thông số đó vào tối ưu cùng một lúc. Việc phức tạp hóa dân cấu trúc mô hình được bắt đầu bằng việc thử nghiệm mô hình đơn giản nhất, bao gồm các thông số tối thiểu. Trên cơ sở đã tối ưu được các thông số đó, mô hình sẽ được chỉnh sửa hoá nhờ việc đưa dân thêm các thông số mới, mở tả chính xác thêm hiện tượng. Ở từng giai đoạn, các thông số được tối ưu một cách
độc lập trên cơ sở các thông số của giai đoạn trước nhân những trị số ban đầu bằng các trị số đã được tính toán.

2. Phương pháp giải bài toán ngược. Dây là bài toán biết các thông tin vào - ra của hệ thống, căn cứ định bò thông số mô hình. Tính chất của bài toán này là phi chính, có nghĩa là những sai số không lón làm của số liệu ban đầu (đúng để giải bài toán ngược) sẽ dẫn đến những sai số rất lớn của những đa lượng cần xác định. Thiết kế giải bài toán thuận, những đặc trưng của lực véc (đồ đốc, suy đốc, khả năng thẩm của đất, thẩm trực vật, địa hình bên dưới lực véc v.v) rất biến động theo không gian; chúng cần phải được trung bình hoá theo một cách nào đó và cách trung bình hoá này dự sao cũng ảnh hưởng tới kết quả tính toán - domingo ở mặt cắt của ra lực véc.

Nur vậy, lý thuyết toán phi chính mới chỉ áp dụng được trong mô hình tuyến tính đơn giản nhất, vận dụng những mô hình đơn giản quan niệm, ngoại những thành tựu trên, lý thuyết này chưa áp ứng được.

10.5. GIỚI THIỆU MÔ HÌNH QUAN NIỆM

10.5.1. Mô hình TANK

Mô hình TANK ra đời năm 1956 tại Trung tâm Quốc gia Phòng chống lũ lụt Nhật, tác giả là M. Sugawara. Từ đó đến nay mô hình được hoàn thiện dần và ứng dụng rộng rãi nhiều nơi trên thế giới.

Cấu trúc mô hình TANK

Lực véc được diễn đạt như một chuỗi các bê cua xếp xep theo 2 phương thẳng đứng và nằm ngang. Giá thiết cơ bản của mô hình là dòng chảy cùng như dòng thấm và các hàm số của lượng nước từ trong các tầng đất. Mô hình có hai dạng cấu trúc đơn và kép.

1. Mô hình TANK đơn

Dạng này không xét sự biên đối của độ ẩm đất theo không gian, phù hợp với những lực véc nhỏ trong vùng gần ẩn quanh năm.

Quan hệ giữa lượng dòng chảy qua các cửa với lượng ẩn trong các bê là tuyến tính:

\[Y = \beta(X-H), \]
\[Y_0 = \alpha X. \]

trong đó: \(\beta, \alpha \)-hệ số của ra thành bể và đất, \(H \)- độ cao cửa ra thành bể.

Theo cấu trúc trên, mô hình TANK mô phỏng cấu trúc ẩn trong các tầng đất của lực véc. Lượng dòng chảy hình thành từ các bê thế hiện đặc tính các thành phân dòng chảy mặt, sát mặt và dòng chảy ngầm. Dòng chảy hình thành từ tất cả các bê chủ mốt sự biến dạng dòng chảy do tác dụng điều tiết của dòng sông là lồ nước có sẵn ban đầu trong sông.
2. Hệ thức cơ bản của mô hình

a) Mẫu bình quân lưu vực (P)

\[P = \frac{\sum W_i \cdot x_i}{\sum W_i} \quad (10.39) \]

Trong đó: n số điểm do mua; \(x_i \) là lượng mua tại điểm thứ \(i \); \(W_i \) - trọng số của điểm mua thứ \(i \). Theo M.Sugawara \(W_i \) sẽ được tron g là một trong bốn số sau: 0,25; 0,5; 0,75; 1,0.

b) Bốc hơi lưu vực (E)

\[E = \begin{cases}
0,3EVT & \text{khi } XA - PS - E \geq 0 \\
0,75(0,8EVT - h_f) + h_f & \text{khi } XA - PS - E < 0 \\
0,6EVT & \text{và } XA - PS - H_f > 0 \\
& \text{xa } PS.
\end{cases} \quad (10.40) \]

c) Cơ cấu chuyển ám bể chứa trên cùng được chia làm hai phần: trên và dưới, giữa chúng xảy ra sự trao đổi ám. Tốc độ chuyển ám từ dưới lên \(T_1 \) và trên xuống \(T_2 \) được tính theo công thức:

\[T_1 = TB_0 + \left(1 - \frac{XA}{PS}\right)TB \]
\[T_2 = TC_0 + \left(1 - \frac{XS}{SS}\right)TC \quad (10.42) \]

trong đó: \(XS, SS \) - lượng ám thực và lượng ám bảo hòa phần dưới bể \(A \); \(TB_0, TB, TC_0, TC \)- các thông số chuyển ám, theo MSugawar, chúng nhận những giá trị:

\[TB = TB_0 = 3 \text{ mm/ ngày đếm,} \]
\[TC = 1\text{mm/ ngày đếm,} \]
\[TC_0 = 0,5\text{mm/ ngày đếm.} \]

d) Đông chảy từ bể \(A \). Lượng nước đi vào bể \(A \) là mua (P). Đông chảy qua các cửa bên (\(YA_1, YA_2 \)) và cửa đày (\(YA_0 \)) được xác định theo các công thức sau:

\[H_f, XA + P - PS \quad (10.43) \]
\[YA_0 = H_f, A_0 \quad (10.44) \]
\[YA_1 = \begin{cases}
(H_f - HA) & \text{khi } H_f > HA, \\
0 & \text{khi } H_f \leq HA.
\end{cases} \quad (10.45) \]

3. Phát triển mô hình Tank trên nền tảng học thuyết đố ám đất và học thuyết dòng chảy suối độc

Như các mô hình phân tích trước, mô hình Tank chứa một lượng thông số khá lớn. Trong tác phẩm của M.Sugawar những thông số này chưa được tiêu tạ về mặt vật lý. Do vậy, như K.Linsley nhận định, mô hình chỉ có thể được thiết lập cho một lưu vực sau nhiều lần thử. Điều này đòi hỏi người sử dụng phải có đủ kinh nghiệm và có mức am hiểu mô hình rất ít. Phản ứng giới thiệu những hoàn thiện mô hình về mặt vật lý, nhằm giúp người sử dụng lựa chọn thông số có cơ sở và dễ dàng hơn.

Bể A mở phương bể lưu vực và các tầng đất trong vùng thoát, trong bể A có đặt ra những mức ám khác nhau của lưu vực (\(HS, HA_1, HA_2, HA_1, PS, SS \)).

Trong quá trình chuyển dòng trên mặt lưu vực hướng về lòng sông một phần nước được giữ lại tạm thời trên suối độc.

Hiện nay có thể giải định rằng những phần khác nhau trong bể A mở phương đang trái nước khác nhau trên mặt suối độc.

151
Theo các kết quả thí nghiệm của I.X. Vaxiliep và A.P. Ivanop, sau khi tuổi bão hòa cho đất, phân phối độ ẩm theo chiều thẳng đứng có dạng như sau: phân dưới của tầng thơ nương có độ ẩm cao, gần đất độ ẩm toàn phần (DATP), vi riêng nó thuộc tầng mao dán. Trên trên, độ ẩm giảm dần và cách mặt thông của nước ngầm 1 khoảng nào đó (cẳng lớn khi thành phần hạt càng nặng), độ ẩm đạt một trị số nhỏ nhất và không đổi độ ẩm dòng ruộng (DADR). Nước mưa trong tầng thơ nương khi độ ẩm chưa đạt đến độ ẩm dòng ruộng luôn ở trong trạng thái treo và mặt khả năng chảy xung dưới.

Giá định "phân dưới" của bể A (hình 10.4) mô phỏng tương tác từ sạt mặt suôn đất đến giới hạn trên của tầng mao dán (TMD). Đờ là vũng độ ẩm tro. Bàn chất vật liệu của thông số SS - độ ẩm dòng ruộng (DADR). Bàn chất của lượng ẩm XS - nước mao dán. Cơ chế duy nhất tiêu hao lượng ẩm XS là bốc hơi:

\[
(DACH) \leq XS \leq SS \leq (DADR).
\]

(10.46)

Hình 10.4. Mô hình TANK đơn

Ngay trên bề mặt suôn đóc tồn tại một lớp mong từ độ lượng âm thoát đi do bốc hơi và bốc hơi qua lâ. Lớp mong này được mô phỏng bởi phân trên của bể A và đặc tính của nó được đánh giá bởi thông số PS.

Thông số PS còn bảo đảm cả lượng nước di chuyển trên mặt lưu vực. Nếu không có lớp nước di chuyển, giá trị của PS chỉ xác định lớp bốc hơi trong thời đoạn tính toán Δt. Ban chất quá trình truyền âm từ dưới lên T1 là quá trình bốc hơi nước từ các tầng đất khác nhau thông qua con đường mao dán. Đây là điểm tương tự của mô hình TANK với mô hình Stanford.4, khi cho rằng lượng nước trong các tầng đất có sự trao đổi hai chiều.

Quá trình T1 không xảy ra khi và chỉ khi:

\[AX ≥ PS + E \] \hspace{1cm} (10.47)

có nghĩa là khi lượng âm làm bảo hòa phần trên bể A, dùng trọng và bốc hơi. Nguồn âm cung cấp cho quá trình T2 là AX, nguồn cung cấp cho quá trình T1 lấy từ các bể B, C, D(XB, XC, XD).

Như vậy 5 quá trình trao đổi âm theo phương thẳng đứng đều có thể xảy ra song song, mỗi quá trình đều có những điều kiện tồn tại riêng, quy luật di chuyển riêng, chúng bộc动物园 cho nhau hoặc tiêu hao âm của nhau.

\[\text{Hình 10.5. Mô hình TANK kép} \]

. Mùra
. Bốc hơi
1. Thamientos các cửa đây
2. Truyen âm lên T1
3. Truyen âm xuống T2

Trong các dạng tốn thiết còn chưa đề cập đến vai trò của tham phu thực vật. Hoàn toàn hợp lý nếu cho rằng thông số HA_1 đảm nhận chức năng đó.

Đồng chảy mát chi xuất hiện khi $XA > PS + HA_1$ thông số HA_2, HA_3, xác định đặc điểm cấu tạo riêng biệt của suôn doc và không có ý nghĩa vật lý có định, biểu thức $(PS + HA_1 - XA + SS - XS)$ xác định lớp tón thiết ban đầu. Giải trí của HA_1, xấp xi với lớp nước mra không đủ-gay ra lưu và điều này hoàn toàn có thể xác định được khi đối chiếu với hình mra và quá trình đồng chảy.

Các thông số HB, HC, HD đánh giá các tón thất ban đầu trên các tầng không tham tương đối. Theo sự nghiên cứu của giáo sư A. N. Beapheny cùng các công sự của ông, quá trình tham qua tầng không tham tương đối triệt giảm rất nhanh theo thời gian. Sự thấm ổn định đạt được chỉ sau 15 - 30 phút ngay cả trong trường hợp các tầng đất hoàn toàn khô. Trong thực tế thời đoạn tính toán Δt thường là nhỏ hơn nhiều thời gian này và điều đó cho phép có HB, HD là các hàng số. Giải trí của HB, HC, HD chỉ vào khoảng vài mm.

Trong mô hình, tác dụng điều tiết của suôn đốc đã tự động được xet thông qua các bể chứa xuất theo chịu tháng đùng. Nhưng hiệu quả của tác động này không đủ mạnh và có thể cho tổng dòng chảy qua các cửa bên của bể $YA_2 + YA_1 + YB_2 + YC_1 + YD_1$ chỉ là lôp cập nước tại một điểm. Đây là một yếu điểm của mô hình TANK so với các mô hình khác như SSARR. Bàn thân tác giả M. Sugawara nhận thức rõ điều này và khắc phục nó bằng cách cho phép dịch chuyển nhân tạo dinh lũ di một thời gian T.

Có thể sử dụng thêm một bể chứa chuyển tính XK để mô phỏng tác động điều tiết suôn đốc. Như vậy, tổng dòng chảy $(YA_2 + YA_1 + YB_2 + YC_1 + YD_1)$ trước khi vào bể điều tiết lòng sông CH phải qua bể điều tiết suôn đốc XK. Cơ chế hoạt động của bể XK như sau:

Tính lôp cập nước tại một điểm trong thời điểm:

\[
CK (I) = YA_2 + YA_1 + YB_2 + YC_1 + YD_1, \quad (10.48)
\]

\[
QCH = XK_1. CK (I-1) + XK_2. CK (I) + XK_3. QCH, \quad (10.49)
\]

trong đó XK_1, XK_2, XK_3 là các thông số và đam bảo điều kiện $XK_1 + XK_2 + XK_3 = 1$. Hiền nhiên, nếu trong (10.49) cho $XK_3 = 1$, $XK_1 = XK_3 = 0$ thì bể XK mất tác dụng và trở lại nguyên bản mô hình TANK ban đầu.

4. Mô hình TANK kép

Trong cấu trúc kép có sự biến đổi độ ẩm của đất theo không gian như hình 10.5. Lưu vục được chia thành các vánh dài có độ ẩm khác nhau. Một vánh dài được diễn tả bằng một mô hình TANK đơn. Về nguyên tắc số lượng vánh dài có thể bất kỳ, trong thực tế tính toán thường lấy 4 vánh dài, mỗi vánh dài có 4 bể, tổng cộng toàn mô hình chứa 16 bể. Với sự mở phỏng này trên toàn lưu vục có những phần ẩm, phần khô biến đổi theo quy luật nhất định. Khi mưa bắt đầu, phần lưu vục ẩm ướt sẽ phát triển khi hấp ven sông lan dần đến những vùng cao hơn theo thứ tự S_6, S_5, S_2, S_1 (điều chỉnh dữ liệu từ i so với toàn lưu vục).

Ngược lại khi mưa khó bắt đầu, do lượng ẩm cung cấp it dần hoặc không có, lưu vục sẽ khô dần bất đầu từ những vánh dài cao nhất đến vánh đại thấp hơn theo thứ tự S_6, S_5, S_2, S_1. Trong cấu trúc kép, lớp nước tự do trong mỗi bể được chuyển động theo hai hướng: thấm dảng và thẩm ngang. Mỗi bể chứa nhận được nước từ phía bên cùng vánh dài và từ phía trái cùng tăng. Trong dạng này, mô hình có thêm các thông số $S_i (i = 1, 2, 3, 4)$.

154
5. Chiến lược do tim thông số

Trong hội nghị quốc tế về lý và tính toán lần (15-12 tháng 8 - 1976, Leningrat) M. Sugawara nhận định: "Do cấu trúc phi tuyến với các bể chứa sáp xếp theo chiều thắng dụng, chưa có phương pháp toán học hiệu náu để xác định các thông số của mô hình TANK, cách duy nhất là thử sai". Quan điểm này được một số nhà từng dùng tận dỗ.

Phương pháp thử sai không gây khó khăn gì lớn đối với những người đã có kinh nghiệm sử dụng mô hình. Nhưng đối với những ai chưa quen mô hình, khi sử dụng cách thử sai sẽ rất lúng túng và gặp phải khó khăn. Giáo sư L. C. Kuchmen và V.I.Koren cũng bấy to rằng mô hình TANK hiện nay được coi là một trong những mô hình tốt nhất, nhưng do có quá nhiều thông số, trong đó có những thông số có phương tích (0.001) đã gây phản e ngại và khó khăn với người sử dụng chưa quen mô hình. Ngoài cách thử sai, cần thiết phải xây dựng những thuật toán khác quan trọng để thử thông số. Năm 1979, M. Sugawara đề xuất phương pháp "lựa chọn từ đơn thông số mô hình". Sự lựa chọn từ được thực hiện không phải bằng các phương pháp tối ưu hoa (tìm kiếm cực trị phi mực tiêu) mà bằng cách thử sai, nhưng được thực hiện từ đơn trên máy tính. Năm 1984 chúng tôi vẫn dùng phương pháp tối ưu hoa Rosenbroc kết hợp với nguyên lý "phức tạp hoá dần mô hình" do giáo sư L.C.Kuchmen đề xuất.

a) Phương pháp thử sai

Phương pháp thử sai đối với người sử dụng phải nắm vững tính năng hoạt động của từng thông số. Toàn bộ các thông số của mô hình TANK có thể chia làm 2 loại: thông số có thử nghiệm (HS, PS, SS, HA3, HA5, HA1, HB, HC, HD, H, TB, TBo, TC, TC6) và thông số không thử nghiệm (A1, A2, A3, A6, B1, B6, C1, C6, D1, D6, XK1, XK2, XK3, CHa, CH2). Hiển nhiên là các thông số thử nghiệm sẽ thay đổi theo thời điểm tổ chức. Ban chất của các thông số này là các thông số tồn tại, khi kết hợp với các thông số dựa kỹ sẽ gây nên hiệu quả trong quá trình động chất. Các thông số dựa bên (A1, A2, A3, B1, C1, D1) thực tế tác động đến độ lớn dinh lư, trong đó A1, A2, A3 tác động đến các dinh lư lớn.

Tình năng hoạt động của các thông số dựa bên và các thông số dựa này có thể được mô tả tổng quát như sau:

- Để làm thay đổi dạng đường quá trình, cần phải điều chỉnh (α+β). Thì dự, muôn đường quá trình nhỏ hơn, phải tăng (α+β) và ngược lại.
- Để làm thay đổi tổng lượng động chất triển lụ, cần điều chỉnh β/(α+β). Thì dự, muôn làm tăng lượng động chất mà không biến đổi dạng quá trình, cần phải tăng β và giảm α, giữ (α+β) không đổi và ngược lại.

Trong quá trình thử sai, phải luôn luôn theo dõi sự cần bằng nước hợp lý trong từng bể. Lượng âm trong từng bể (XA, XS, XB, XC, XD, XCH) liên tục biến đổi trong quá trình tính toán, sau một chu kỳ các lượng âm này phải đạt được những trị số hợp lý.

Thì dự, chu kỳ hoạt động của bể nước ngầm D là một miền (từ cuối mùa kết năm đến đầu mùa lũ năm sau), sau một miền hoạt động, XD cuối mùa kết phải đạt trị số hợp lý phù hợp với phương trình cần bằng nước việt cho một miền (X = Y + Z ± ΔU). Chênh lệch giữa XD đầu và cuối năm phải phù hợp với ±ΔU. Trong ca một chuỗi miền hoạt động XD không được nhỏ hơn một giá trị tương ứng với một lượng nước động năm ở dinh. Nếu bể D có xu hướng trừ nhiều hơn họheits xao tháo, XD sẽ có xu hướng lơn dần theo thời gian, động chất kết các năm càng về sau càng lớn và ngược lại. Bất kỳ sự phạt gì cần cân nước nào trong các bè đều dẫn đến sự không ổn định của bể thông số và sự bất hợp lý trong thành phần dòng động mất, dòng sót mất và dòng ngảm. Khi tiến hành thử sai, cần phải đảm bảo được đầy đủ các thông tin về các thành phần dòng chất, về các thành phần trong phương trình cần bằng nước từng bể, dòng lực các diện biến cùng nguyên nhân gây ra sự mát cần bằng, từ đó có xây dựng hiệu chỉnh thích hợp. Các bè C, B, A sẽ có các chu kỳ hoạt động 155

b) Lựa chọn tự dòng thông số mô hình theo M. Sugawara

Chế độ này chỉ áp dụng đối với các thông số của bên và cửa đáy. Thoát đầu, các thông số của bên và cửa đáy nhận những giá trị sau: $A_1 = A_2 = A_0 = 0,2; B_1 = B_0 = 0,05; C_1 = C_0 = 0,01; D_1 = 0,001$. Quy tắc kỹ hiệu dòng chảy qua các cửa bên A_2, A_1, B_1, C_1, D_1 liên tục trong từng 3 liệu là Y_1, Y_2, Y_3, Y_4, Y_5 (H.10.6).

Hình 10.6. Dòng chảy từ các bể A,B,C,D

Toàn bộ quá trình dòng chảy được chia làm 5 thời đoạn $1, 2, 3, 4, 5$ tương ứng với sự hoạt động của 5 cửa bên: A_2, A_1, B_1, C_1, D_1. Quy tắc chia thời đoạn như sau:

Thời đoạn 1: Những ngày mà dòng chảy qua cửa A_2 đóng vai trò chính sẽ thuộc thời đoạn 1, nghĩa là khi tỷ số giữa Y_1 với tổng dòng chảy lớn hơn C (C - một hàng số).

$$Y_1 > C \left(Y_1 + Y_2 + Y_3 + Y_4 + Y_5 \right) = CY$$

Thời đoạn 2: khi

$$Y_1 < CY \text{ và } (Y_1 + Y_2) > CY.$$

Thời đoạn 3: khi

$$(Y_1 + Y_2) < CY \text{ và } (Y_1 + Y_2 + Y_3) > CY.$$

Thời đoạn 4: khi

$$...$$
$$(Y_1+Y_2+Y_3) < CY \text{ và } (Y_1+Y_2+Y_3+Y_4) > CY.$$

Thời đoản 5: phần còn lại.

C có thể được chọn trong các giá trị sau: 0; 0,5; 0,25; 0,1; 0,05.

Giá trị $C = 0,1$ tổ ra tốt đối với các sông của Nhật. Trong từng thời đoản 1, 2, 3, 4, 5 tổng lượng dòng chảy và hình dạng đường nước rút của quá trình thực do và tính toán được đánh giá bởi các tiêu chuẩn sau:

$$RQ(I) = \sum_{N} \tilde{Q}(N)/\sum_{N} Q(N) \quad I = 1,\ldots,5$$

$$RD_{I} = \frac{\sum_{N} [\log \tilde{Q}(N-1) - \log \tilde{Q}(N)]}{\sum_{N} [\log Q(N-1) - \log Q(N)]} \quad I = 1,\ldots,5.$$

trong đó Q là lưu lượng thực do, \tilde{Q} là lưu lượng tính toán, I là chỉ số của các thời đoản, N là số ngày của mỗi thời đoản I mà có hiệu số $[Q(N-1) - Q(N)]$ dương.

Nguyên lý của việc tự động điều khiển thông số như sau:

- Khi $RQ(I) > 1$ $RQ(I) < 1$, phải giảm (tăng) thông số của bên, và tăng (giảm) thông số của đối. Việc này được thực hiện tự động bằng cách chia thông số của bên cho $\sqrt{RQ(I)}$ và nhân thông số của đối với $\sqrt{RQ(I)}$.

- Khi $RD(I) > 1$ $RD(I) < 1$, phải giảm (tăng) cả hai thông số như nhau. Việc điều khiển này được thực hiện bằng cách chia cả hai thông số của bên cho $RD(I)$. Nguyên lý điều khiển như trên dựa đến các công thức điều khiển sau:

$$A_0 = A_0[(\sqrt{RQ(1)})/RD(1) + (\sqrt{RQ(2)})/RD(2)], (1/2)$$

$$AM_1 = A_1/(\sqrt{RQ(2)} \cdot RD(2)).$$

$$A_2 = (A_1 + A_2)/(\sqrt{RQ(1)} \cdot RD(1) - AM_1)$$

$$A_1 = AM_1$$

$$B_0 = B_0 \sqrt{RQ(3)}/RD(3)$$

$$B_1 = B_1 \sqrt{RQ(3)}/RD(3)$$

$$C_0 = C_0 \sqrt{RQ(4)}/RD(4)$$

$$C_1 = C_1 \sqrt{RQ(4)}/RD(4)$$

$$D_1 = D_1/RD(5).$$

Cần kiểm tra lưu lượng nước được cung cấp từ các bể trên. Nếu $RQ(5) > 1$, $RQ(5) < 1$, phải giảm (tăng) các thông số của dây của các bể trên. Sự điều khiển lưu lượng nước cung cấp cho bể D được thực hiện bằng điều khiển C_0 của bể C, sau đó sự biến đổi trong bể C do việc điều khiển C_0 gây ra sẽ được bù trừ bởi các điều khiển B_0 và v.v.. Với cách thức như vậy, sẽ có các công thức điều khiển tiếp sau:

$$C_0 = C_0/RD(5)$$

$$B_0 = B_0 \sqrt{RQ(5)}$$

$$A_0 = A_0 \sqrt{RQ(5)}.$$

Trong một số trường hợp, giá trị của $RQ(I)$ và $RD(I)$ có thể rất khác 1. Khi xuất hiện những trường hợp đó, chúng ta giới hạn $RQ(I)$ và $RD(I)$ trong phạm vi (1/2, 2) có nghĩa là giá trị $RQ(I)$ và $RD(I)$ lớn hơn.
2 sẽ được lấy bằng 2, và những giá trị nhỏ hơn 1/2 sẽ được lấy bằng 1/2.

Trong quá trình điều khiển cần lưu ý hệ điều khiển trên có thể không đòi hỏi. Có nghĩa là sau một vài lần tính lệp (thường có ít hơn 15 lần) kết quả thu được khá tốt, nhưng sau đó kết quả lại tái đi không phục hồi lại được. Một trong những nguyên nhân là \(RD(L) \) chịu tác động của nhiều yếu tố ngẫu nhiên kem tin cậy. Để giảm tác động của \(RD(L) \) có thể thay \(RD(L) = \sqrt{RD(I)} \) hoặc \(RD(L) = \frac{1}{\text{RD}(I)} \). \(RD(5) \) là kem tin cậy nhất, do đó việc điều khiển thành số 0 đặc biệt cầu vút trong. Kết quả loại bỏ hệ điều khiển thông số nào trên.

c) Tối ưu hoá thông số mô hình

Bộ thông số mô hình được thiết lập theo phương pháp Rosenbroc với hàm mục tiêu của quá trình điều khiển thông số nên trên.

\[
K = \sum_{i=1}^{n} (Q(t) - Q(t, A))^2 \, dt \to \min
\]

Trong đó: n - số quá trình đưa vào rồi ưu; T - thời gian 1 quá trình, A - vec to thông số được mà số theo bảng sau:

<table>
<thead>
<tr>
<th>T.S</th>
<th>A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD</td>
<td>A</td>
<td>HA</td>
<td>A</td>
<td>HA</td>
<td>A</td>
<td>HA</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>HB</td>
<td>HC</td>
<td></td>
</tr>
<tr>
<td>HD</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>HD</td>
<td>T</td>
<td>B</td>
<td>C</td>
<td>0</td>
<td>D</td>
<td>0</td>
<td>XK</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>CH</td>
<td>α</td>
<td>TB</td>
</tr>
<tr>
<td>HD</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Phương pháp tối ưu hoá không thể thành công nếu đưa tất cả các thông số vào tối ưu đồng thời. Ở đây, tối ưu hoá được có là thứ sai tự đồng thời nhằm mục tiêu K với thuật toán Rosenbroc. Điều dò có nghĩa là thuật toán tối ưu phải đảm bảo cho phép lựa chọn được các thông số mong muốn đưa vào tối ưu, do vậy các thông số đều được gắn nhận như bảng trên. Quá trình tối ưu thông số mô hình phải tuân theo những nguyên tắc đã được trình bày ở trên.

d) Mô số nhận xét

Mô hình TANK được nhiều cơ quan nghiên cứu ứng dụng: Trường Đại học Thụy lợi, Viện KHS ty Thụy lợi Quốc gia, Công ty Khảo sát Thiết kế tiến tiến, Cục Dự báo thủy văn v.v.. Trong quá trình ứng dụng mới lên một số vấn đề:

1. Mô hình khó thể hiện sự "trễ" của dòng chảy so với mua. Với đặc điểm này, mô hình thích ứng với các lưu vực nhỏ. Điều này có thể khắc phục được bằng cách nối tiếp thêm một số đề cải tiến và kinh nghiệm tính biên di động tiêu đề của lưu vực và lượng sông. Hoàn toàn có thể sử dụng mô hình" hợp den" trên trên trong công việc này.

2. Do mô hình được cấu tạo từ các bộ truyền tinh, các thông số của mua trong một số trường hợp trở lại kem nhạy. Trên một số lưu vực, dòng chảy mặt dòng vơi độ dâng kế (lũ lên nhanh, rút nhanh), cơ sự phần hoá rõ rệt trong sự hình thành các cấp lưu lượng, quá trình dòng chảy tương đối nhanh cỏm với quá trình mua, nên sử dụng hệnicos mặt (bể A) dưới dạng phi tuyến. Thế ẻu, câu \(A_1 \) thể là bể 2, câu \(A_2, A_3 \) có thể là số bậc cao hơn.
3. Xét điều kiện ban đầu. Trong mô hình, tất cả các quá trình thành phần như bốc thoát nước, tồn tại trên thấm thực vật tạo đổi âm giữa các vùng và các bể thấm, diện rộng, thấm hành đồng mặt, dòng sạt mặt, dòng ngầm, diện toán lưu trên sông nước và trong sông được liên kết với nhau thông qua việc biến đổi các độ ẩm \(XA, XS, XB, XC, XD, XCH \) trong từng bê. Rất quan trọng việc xét các độ ẩm này tại đầu thời kỳ tính toán. Việc xét điều kiện ban đầu có thể tiến hành theo thực phẩm sau:

- Để xét các độ ẩm ban đầu trong phần trên, phần dưới bê \(A (XA_0, XS_0) \) nên chọn thời điểm ban đầu tính toán là lúc đất đã được bảo hòa, độ thiếu hụt ẩm trong đất không bằng 0 (thị dụ sau một trận mưa lớn gây lũ rớt). Trong những trường hợp này có thể có:
 \[
 XA_0 = PS + HA
 \]
 \[
 XS_0 = SS.
 \]
- Có đủ cơ sở để cho rằng \(XA, XS \) có quan hệ với độ ẩm lưu vực, do vậy, trước thời điểm tính toán, \(XA_0, XS_0 \) có thể được xác định qua môi rộng bước của chúng đối với độ ẩm đất theo giờ sử N.Ph. Befanhi:
 \[
 J_v = x_1 + 0.7x_{2.4} + 0.5x_{3.9} + 0.3x_{10.14} + 0.2x_{15.30} + 0.1x_{31.60}
 \]
 Ở đây, \(x_1 \) - lượng mưa một ngày trước thời điểm; \(x_{2.4} \) - lượng mưa trong ngày 2, 3, và 4 trước thời điểm tính toán v.v..
- Để đánh giá độ ẩm ban đầu trong các bê khác (\(XB, XC, XCH \)) hoàn toàn có thể giả định tồn tại các môi quan hệ bền vững giữa chúng với lưu lượng trước là \(Q_0 \).
- Độ ẩm \(XD_0 \) ban đầu thiết lập theo vị trí số \(Q_0 \) bằng cách tính ngược sao khi đã biết \(XA_0, XS_0, XB_0, XC_0, XCH_0 \).

10.5.2. Mô hình SSARR

Mô hình SSARR do Rockwood đề xuất từ năm 1956. Khi xây dựng mô hình này người ta quan niệm rằng hệ thống sông ngòi dự phòng tập cùng chi gồm các thành phần cơ bản sau:

- Các lưu vực sông nhỏ,
- Các hố chứa tự nhiên và nhân tạo,
- Các đoạn sông.

Do đó người ta xây dựng mô hình toàn học cho từng loài, sau cùng tập hợp lại ta sẽ có mô hình toàn học của cả hệ thống sông. Các mô hình toàn học thành phần đều sử dụng hai phương trình cơ bản là phương trình diệt tục và phương trình trừ lượng.

Phương trình diệt tục là:

\[
(1/2)[(I_1 + I_2)\Delta t] - (1/2)[(Q_1 + Q_2)\Delta t] = S_2 - S_1
\]
(10.51)

trong đó \(I_1, I_2 \) - lưu lượng chảy vào ở đầu và cuối thời đoạn tính toán \(\Delta t \); \(Q_1, Q_2 \) - lưu lượng chảy ra ở đầu và cuối thời đoạn \(\Delta t \). Phương trình trừ lượng của hố chứa là:

\[
\frac{dS}{dt} = T_s \frac{dQ}{dt}
\]
(10.52)

hay viết dưới dạng sai phần:

\[
\Delta S = T_s \Delta Q
\]
(10.53)

Thay (10.53) vào (10.51) ta có:
\[\frac{I_1 + I_2}{2} \Delta t - \frac{Q_1 + Q_2}{2} \Delta t = T_s (Q_2 - Q_1). \]
(10.54)

Đặt \(I_m = \frac{I_1 + I_2}{2} \) và qua biến đổi ta có:

\[
Q_1 \left(T_s + \frac{\Delta t}{2} \right) = Q_1 \left(T_s - \frac{\Delta t}{2} \right) + I_m \Delta t,
\]

\[
Q_2 \left(T_s + \frac{\Delta t}{2} \right) = Q_1 \left(T_s + \frac{\Delta t}{2} \right) - Q_1 \Delta t + I_m \Delta t,
\]

\[
Q_2 = \frac{(I_m - Q_1) \Delta t}{T_s + \frac{\Delta t}{2}} + Q_1. \quad (10.55)
\]

Nuur vậy nếu biết được lưu lượng chảy vào trung bình \(I_m \) lưu lượng chảy ra ở đầu thời khoảng tính toán \(Q_1 \) và thời gian từ nước của hồ \(T_s \) thì có thể tính được lưu lượng chảy ra ở cuối thời khoảng tính toán \(Q_2 \) theo phương trình (10.55).

1. Mô hình lưu vực

- Lưu lượng đến của một lưu vực kin gồm có lượng mực và tuyệt đối (Hình 10.7). Một phần của lưu lượng đến này được giữ lại trên bề mặt lưu vực làm ẩm đất, một phần bay hơi vào khí quyển, phần còn lại sẽ tạo thành 3 kiểu như sau:
 - Chảy tràn trên mặt đất,
 - Chảy ngầm trong đất và lớp đất ở phía trên,
 - Chảy ngầm trong lớp đất ở tầng sau, (xem hình 10.7).

Người ta hình dung mỗi quá trình chảy kế trên như chảy qua một chuỗi các hồ kế tiếp nhau. Lưu lượng chảy vào hồ chứa đầu tiên của chuỗi hồ chứa này chính là lưu lượng chảy vào của hồ chứa tiếp theo. Tiếp hợp lưu lượng chảy ra từ hồ chứa cuối cùng chính là lưu lượng chảy ra của cả lưu vực.

Để tính được lưu lượng chảy vào của các hồ chứa đầu tiên ta phải tính được toàn bộ lưu lượng đến của lưu vực, sau đó tách riêng phần tham gia dòng chảy sát mặt và dòng chảy ngầm.

a) Tính lượng mực mưa trung bình trên lưu vực

Người ta thường tính lượng mưa trung bình ngày theo công thức:

\[
X_N = \frac{1}{n} \sum_{i=1}^{n} a_i x_i
\]
(10.56)

trong đó:

- \(x_i \) - lượng mực được đo trực thâm thứ \(i \) trong một ngày;
- \(n \) - số trực thâm đo mưa trên toàn lưu vực;
- \(a_i \) - hệ số trung bình tính theo phương pháp hình nhiều cạnh hoặc lấy bằng tỷ số giữa lượng mưa trung bình hàng năm trên phân lưu vực tương ứng và lượng mưa trung bình hàng năm tại trạm đo mưa thứ \(i \).
- \(X_N \) - lượng mưa trung bình ngày tính toán.

Khi thời khoảng tính toán \(\Delta t \) ngắn hơn một ngày thì lượng mưa trung bình trong khoảng thời gian \(\Delta t \) là:

\[X_{\Delta t} = b X_N \]
(10.57)

với \(b \) là hệ số chuyển đổi.

160
b) Tính độ ẩm của đất

Hệ số dòng chảy phụ thuộc yếu vào độ ẩm của đất trên lưu vực. Người ta chi dùng chỉ số độ ẩm A để biểu thị độ ẩm của đất.

\[A_2 = A_1 + (X - Y) - K_1E \] \hspace{1cm} (10.58)

với \(A_1, A_2 \) - chỉ số độ ẩm ở đầu và cuối khoảng \(\Delta t \)
\(X, Y \) - lượng mưa và lượng dòng chảy trong thời khoảng \(\Delta t \)
\(E \) - lượng bọc hơi ngày, tính trung bình trên toàn lưu vực. Nếu trên lưu vực có \(n \) trận bọc hơi thì:

\[E = \frac{1}{n} \sum_{i=1}^{n} E_i. \] \hspace{1cm} (10.59)

\(\gamma_i \) - hệ số trung bình;
\(E_i \) - lượng bọc hơi ngày do được ở trận thứ \(i \);
\(K_1 \) - hệ số chuyển đổi, nó thay đổi theo độ ẩm của đất.

\(K_1 = f_1(A). \)

Trường hợp thiếu tài liệu bọc hơi ngày thì dùng trị số bọc hơi trung bình là: \(E_1 = \frac{1}{24} \sum_{i=1}^{n} E_i. \)

\(E \) nhân với hệ số chuyển đổi \(K_2 \). Lức độ ẩm của đất tính theo công thức:

\[A_2 = A_1 + (X - Y) - \frac{\Delta t}{24} K_2 E. \] \hspace{1cm} (10.60)

c) Tính lớp dòng chảy

Lớp dòng chảy, tổng cộng là \(Y = \alpha X \), với \(\alpha \) là hệ số dòng chảy phụ thuộc vào độ ẩm của đất.

Lớp dòng chảy tổng cộng này được phân chia thành 3 thành phần ứng với dòng chảy mặt, dòng chảy sát mặt và dòng chảy ngầm.

Lớp dòng chảy ngầm trong một giờ là:

\[Y_{ng} = K_3 \frac{Y}{\Delta t} \] \hspace{1cm} (10.61)

\(K_3 \) - là hệ số chảy ngầm, nó phụ thuộc vào chỉ số thẩm P:

\(K_3 = f_3(P). \)

Chỉ số thẩm P tính như sau:

\[P_2 = P_1 + \left(\frac{24 Y}{\Delta t} - P_1 \right) \frac{\Delta t}{T + \frac{\Delta t}{2}} \]

\(P_1, P_2 \) - chỉ số thẩm ở đầu và cuối thời khoảng \(\Delta t \)
\(T \) - thời gian trước nước biến đổi từ 30 đến 60 giây.

Việc phân chia thành dòng chảy mặt \(Y_m \) và dòng chảy sát mặt \(Y_{sm} \) dựa vào các giá thiết sau:

- Dòng chảy mặt đạt trị số lớn nhất \(Y_{max} \) và giữ nguyên vị trí số đối khi \(G \) lớn hơn 200% của \(Y_{max} \)
- Dòng chảy mặt nhỏ nhất \(Y_{min} \) bằng 10% của \(G \), với:

\[G = Y_m + Y_{sm} = Y - Y_{ng} \]

Khi đó lớp dòng chảy mặt trong một giờ là:

\(Y_m = f_4(G) \)

Khi \(Y_m < Y_{max} \) thì:
$$Y_m = \left(0.1 + 0.2 \cdot \frac{G}{Y_{\text{max}}} \right)G$$

Nếu $Y_m \geq Y_{\text{max}}$ thì lấy $Y_m = Y_{\text{max}}$

$$Y_{\text{Sm}} = G - Y_m.$$

d) Tính lưu lượng chảy ra của lưu vực

Sau khi thực hiện phân chia lưu lượng mưa hiệu quả thành 3 phần: lưu lượng tham gia dòng chảy mặt, sát mạt và dòng chảy ngầm, ta có đó là lưu lượng chảy vào của 3 hồ chứa đầu tiên trong 3 hồ chứa tương ứng với 3 cách tạo thành dòng chảy. Nếu biết số hồ chứa của từng chuỗi n_1, n_2, n_3 và thời gian trú nước T_{S1}, T_{S2}, T_{S3} ta có thể tìm được lưu lượng chảy ra từ hồ cuối cùng bằng cách sử dụng liên tiếp công thức (10.58). Lưu lượng chảy ra của lưu vực là tổng của các lưu lượng chảy ra từ 3 hồ chứa sau cùng.

e) Điều chỉnh thông số

Các thông số có mô hình lưu vực là:
- Các thông số để tính mưa bù bình quân trên lưu vực a, b,
- Các thông số để tính bốc hơi K_1, K_2, γ,
- Các thông số n_1, n_2, n_3, T_{S1}, T_{S2}, T_{S3} và T.
- Quan hệ giữa hệ số dòng chảy và độ dốc $\alpha = f_2(A)$,
- Quan hệ để tính lỗ dòng chảy ngầm $K_3 = f_3(P)$,
- Quan hệ để phân chia dòng chảy mặt và dòng chảy ngầm $Y_m = f_4(G)$.

Hình 10.7. Sơ đồ mô hình lưu vực SSARR
Các thông số và quan hệ kế trên được lựa chọn giải trị tối ưu thông qua việc tính thứ dân sao cho sự sai khác giữa lũ lượng thực tế do và lũ lượng tính toán là nhỏ nhất.

Cho tới nay, việc điều chỉnh các thông số của mô hình SSARR còn chưa được tự động hoá, vi thể nó còn là một công việc rất phức tạp và phụ thuộc nhiều vào kinh nghiệm của người điều chỉnh mô hình. Ông trên đã kể ra nhiều thông số và quan hệ, nhưng chỉ có 4 loại sau ảnh hưởng nhiều nhất tới kết quả tính toán.

- Các hệ số tính mực trung bình lũ vực a_i, b_i.
- Hệ số T_{31} của dòng chảy mặt,
- Quan hệ hệ số dòng chảy và độ ẩm $\alpha = f_s(A)$,
- Quan hệ của hệ số chảy nằm với chỉ số thấm $K_3 = f_s(P)$.

Người ta chọn các thời kỳ có đường quá trình biến đổi nhiều (mưa lũ năm nước lũ) để điều chỉnh thông số, sau đó thứ tự lại cho các năm khác.

2. Mô hình động chảy trong sông

Đồng sông được coi như bao gồm một chuỗi hồ chứa kết tiếp nhau, mỗi hồ chứa ứng với một đoạn sông dài từ 6 đến 10 km. Thói gian trữ nước T_S của đoạn sông tính theo quan hệ:

$$T_S = \frac{K_4}{Q^n}$$

với K_4, n là các hàng số thực nghiệm.

Cũng có thể tính T_S theo quan hệ $T_S = f(Q)$ lấy ra từ tài liệu thực do.

Lũ lượng chảy ra từ đoạn này được dùng làm lũ lượng chảy vào ở đoạn tiếp theo. Việc lựa chọn các giải trí của K_4, n và chiều dài tính toán của các đoạn sông được làm theo cách thứ dân.

3. Mô hình hồ chứa

Đối với hồ chứa tự nhiên, lũ lượng chảy vào hồ coi như đã biết, nên tính được thời gian trữ nước T_S thì tính được lũ lượng chảy ra theo phương trình (10.58). T_S biến thiên theo mức nước hồ: $T_S = f(H)$. Với mỗi hồ chứa quan hệ $T_S = f(H)$ đã được xác định sẵn từ trước, do đó biết lũ lượng chảy vào thì tính được ngay lũ lượng chảy ra.

Ở các hồ chứa nhân tạo, ngoài đường cong $T_S = f(H)$ còn cần phải biết thêm H_{max}, H_{imin}, đường cong $H \sim Q$ khi $H > H_{\text{max}}$ và khả năng thoát qua hồ ứng với các cấp mức nước, nên là hồ chảy theo chế độ có điều tiết thì phải tính đến sự điều tiết này. Lũ lượng chảy ra tính toán phải nhỏ hơn khả năng thoát qua của hồ và mức nước tính toán phải lớn hơn H_{min}.

4. Mô hình hệ thống sông

Hệ thống sông bao gồm các lưu vực nhỏ, các hồ chứa và các đoạn sông. Những mô hình thành phần này đã biết, khi ghép lại trong mô hình hệ thống sông còn phải chú ý đến ảnh hưởng của nước vật, hoặc lũ lượng lũ chảy ra để tuồi sự lượng và lũ lượng chảy thêm vào đoạn sông do mưa trên dòng sông, hoặc do nước sau khi đã tuồi lượng xong được thỏa ra sông. Tất cả quá trình tính toán đã được thực hiện trên máy tính theo các chương trình mới.

10.6. MÔ HÌNH DIỆN TOÀN CHẤU THỎ

Ở những dòng chảy qua đồng bằng, nếu không có đề bao bọc thì lúc mưa lũ nên, nước sông sẽ dâng lên và chảy trên ra đồng ruộng hai bên bờ, khi đó dòng chảy không chỉ theo chiều dòng sông mà còn theo chiều vuông góc với dòng sông nữa. Để mô tả quá trình này, rõ ràng không thể dùng hệ phương trình Saint
Venant, vì hệ phương trình này chỉ mô tả quá trình chuyển động không ổn định, biến đổi chất của nước chảy một chiều trong sông. Người ta có ý định mô tả sự chuyển di của dòng lũ qua vùng dòng bằng ngập lụt giống như sự chuyển đi của thủy triều ngoại vi chúng đều chuyển di theo cả hai chiều vuông góc với nhau. Phương trình biểu diễn sự chuyển di của thủy triều ở biên đã được lập ra từ lâu với giả thiết là ở một vùng biên thì đồ sâu của nước không chất lượng khác nhau quanh nhiều. Ở vùng dòng bằng ngập lụt giả thiết này không còn đúng nữa, cho nên không thể có kết quả nếu như áp dụng phương trình chuyển thủy triều để tính chuyển lưu qua vùng dòng bằng. Trong các năm 1962 - 1966, khi khảo sát vùng dòng bằng hạ lưu sông Mé-Kông, người ta đã nhận thấy rằng chiều đầu của vùng "dòng bị bì ngập hoàn toàn" là rất khác nhau, nên mức không thể có chiều sâu ở mỗi nơi là những dao lượng cung cấp. Ngay cả khi lũ lớn nhất, dòng bằng vẫn còn nhiều nơi không bị ngập và hình thành nhiều ở chỗ nước trước giai đoạn có nguồn. Căn cứ vào thực tế địa hình người ta chia bể mặt lưu vực thành nhiều, các ở này lại được xếp thành các từng liên tiếp nhau sao cho một ở chế tạo đối lưu với các ở khác ở cùng tầng và những ở ở tầng trên kế trước và sau nó. Đây là một giải pháp sáng tạo cho phép mô tả ganz đúng dòng chảy hai chiều ở dòng bằng mà khối lượng toàn lại giảm đi rất nhiều so với việc dùng phương trình thủy triều. Cách chia lưu vực thành nhiều ở và tính toán thuộc đối lưu giữa các ở như đã nói ở trên chính là nội dung mô hình Den-ta (Delta) do Práysman (Preissman) và Cunge đưa ra.

Sau khi chia bể mặt lưu vực thành nhiều ở, người ta thử nghiệm hai giả thiết là:

- Thé tích nước trong mỗi ở là hàm bậc nhất của mức nước trong ở.
- Lưu lượng chảy giữa hai ở là hàm bậc nhất của mức nước ở hai ở ấy ở cùng một thời điểm, nghĩa là bộ qua lưu quốc tính tác động tới lưu lượng chảy giữa hai ở. Người ta đã chứng minh rằng ở vùng dòng bằng, sai số do bộ qua lưu quốc tính là rất nhỏ.

Phương trình cân bằng nướciet cho ở thứ i là:

$$S_i \frac{dz}{dt} = P_i + \sum_{k=1}^{k} Q_{ik} \quad (10.62)$$

trong đó P_i là lượng mưa hiểu quả trên mặt ở thứ i, nó thay đổi theo thời gian t; $P_i = f_i(t)$. Giả trị P_i biết được từ tài liệu đo đạc mưa và thậm chí, diễn tích mặt nước ở thứ i ứng với đồ sâu thay đổi thì cùng biên đối theo $S = f_2(zi)$, $Q_{i,k}$ là lưu lượng nước chảy từ ở thứ i vào ở thứ k, theo giả thiết Q_{ik} là hàm bậc nhất của Z_i và Z_k.

$$Q_{ik} = f_i(Z_i, Z_k)$$

Lưu lượng chảy giữa hai ở liên nhau có thể tuân theo các quy luật chảy lũ ở sông và loài bộ truyền. Khi chảy lũ sông, dòng chảy đồng chảy tốn chặt cực bộ và lưu lượng tính theo công thức Stric-lo:

$$Q_{ik} = \alpha AR^{2/3} J^{1/2} \quad (10.63)$$

với

A: là diện tích mặt cắt uốt giữa hai ở thứ i và thứ k.

R: bán kính thủy lục của A và J là tốc độ mặt nước, là hàng số. Vi A, R, J, đều là hàm số của mức nước giữa hai ở i và k cho nên:

$$Q_{ik} = f_i(Z, \alpha) \quad (10.64)$$

với $\alpha_i = \beta Z_i + (1 - \beta)Z_k$. Ở đây hàm số $\beta \leq 1$.

Giả sử lưu chọn mức thời gian tính toán là Δt, ở thời điểm đầu $t = n \Delta t$ đã biết diện kiến đầu là giá trị đó sau mức nước ở tất cả các ô, vậy là đã biết, ta tính được Q^n_k bằng cách lấy tổng công lưu lượng chảy qua các mặt xung quanh của ô thứ i. Chi số n ở các kiến hiệu Q^n_i biểu thị các đầu đường Q, Z ở thời điểm $t = n \Delta t$.

Lấy tích phân phương trình (10.62) trong khoảng thời gian Δt ta có:

$$ S_i \Delta Z_i = P_i(r) \Delta t + \Delta t \sum_{k=1}^{n} Q_{i,k}(r) $$

(10.65)

với r là thời điểm nằm giữa $n \Delta t$ và $(n+1) \Delta t$:

$$ n \Delta t < r < (n+1) \Delta t $$

Còn lưu lượng chảy từ ô thứ i sang ô thứ k là:

$$ Q_{i,k}(r) = \frac{\rho Q_{i,k}^n + 1}{\beta} Q_{i,k}^n $$

hàng số tự chọn trong khoảng $0 \leq \beta \leq 1$.

Nếu chọn $\beta = 0$ thì $Q_{i,k}(r) = Q^n_i$, do đó tất cả các số hạng ở vế phải của phương trình (11.65) là đã biết, ta tính ngay được giá trị ΔZ_i ở vế trái, từ đó tính ra được Z_i ở thời điểm $(n+1) \Delta t$ theo công thức:

$$ Z_i^{n+1} = Z_i^n + \Delta Z_i. $$

Về mặt cơ cấu tính toán, chọn $\beta = 0$, số độ rải đen giản. Nhưng để $\beta = 0$ ta phải chọn Δt đủ nhỏ, sao cho có thể có lưu lượng $Q_{i,k}$ không thay đổi nhiều trong khoảng Δt, bảo đảm điều kiện:

$$ Q_{i,k}(r) = Q^n_{i,k}.$$

Thường ta phải chọn $\Delta t < 30$ phút. Việc chọn Δt nhỏ, dẫn tới thời gian tính trên máy tính tăng lên nhiều. Người ta thường chọn $\beta \neq 0$ để có thể lựa chọn Δt dài hơn (từ 6 giờ đến 72 giờ). Khi chọn $\beta \neq 0$ phương trình (10.65) được giải theo phương pháp số do âm.

Nếu chọn $\beta = 1$ ta có:

$$ Q^{n+1}_{i,k} = Q^n_{i,k}. $$

(10.66)

$Q^{n+1}_{i,k}$ là lưu lượng chảy từ ô thứ i sang ô thứ k ở thời điểm $t = (n+1) \Delta t$ ta chưa biết được cho nên dùng phép khai triển Taylor để chuyển $Q^{n+1}_{i,k}$ thành một chuỗi các giá trị ở thời điểm $t = n \Delta t$ đã biết. Khi bỏ qua các vô cùng bỏ cuộc cao, khai triển Taylor của $Q^{n+1}_{i,k}$ là:

$$ Q^{n+1}_{i,k} = Q^n_{i,k} + \frac{\partial Q^n_{i,k}}{\partial Z_i} \Delta Z_i + \frac{\partial Q^n_{i,k}}{\partial Z_k} \Delta Z_k. $$

(10.67)

Thay (10.66) vào (10.65) và sắp xếp lại các an số ΔZ_i, ΔZ_k ta có:

$$ (- \frac{S_i}{\Delta t} + \sum_k \frac{\partial Q^n_{i,k}}{\partial Z_i}) \Delta Z_i + \sum_k \frac{\partial Q^n_{i,k}}{\partial Z_k} \Delta Z_k + L_i = 0. $$

(10.68)

Ô phương trình (11.68), ΔZ_i, ΔZ_k là sự thay đổi mức nước ở các ô thứ i và ô thứ k chính là các an số phải tìm, còn lại tất cả các thành phần khác đã biết ở thời điểm $n \Delta t$.

Ứng với mỗi ô ta viết được một phương trình tuyến tính dạng (10.68). Nếu lưu vực gồm m ô thì ta viết một hệ m phương trình tuyến tính bậc nhất với m ẩn số. Hệ phương trình này lúc nào cũng giải được bằng các phương pháp quen biết.
10.7 MÔ HÌNH HOÁ CHUỖI DÔNG CHÁY

Chuỗi dòng chảy thức \(X_1, \ldots, X_n \) có thể được đặc trưng bởi một bộ các thông số thống kê:

\[\theta = \{ \theta_1, \ldots, \theta_d \} \]

Thì dự: \(\theta_1 \) - trị số trung bình, \(\theta_2 \) - khoảng lệch quan phương hoặc phương sai, \(\theta_3 \) - mômen tâm bậc 3 hoặc hệ số lệch \(C_s \). Từ chuỗi quan trắc, luôn luôn có thể thu được các ước lượng \(\theta_i \) với mọi i. Mô hình hoá chuỗi dòng chảy có nghĩa là xác định toán từ chuyển đổi chuỗi các số ngẫu nhiên \(\eta(1), \ldots, \eta(n) \) thành chuỗi dòng chảy \(Y_1, Y_2, \ldots, Y_n \) sao cho đảm bảo sự tương tự thống kê náo đó:

\[Y(i) = L(\theta|\eta(i)), \quad i = 1, 2, \ldots, n. \]

Bàn thân toàn từ chuỗi đổi \(L \) cũng phụ thuộc vào bộ thông số thống kê \(\theta \) được dùng làm tiêu chuẩn tương tự. Các mô hình ngẫu nhiên được quy thành từng lớp tùy thuộc vào tiêu chuẩn tương tự \(\theta \), còn bàn thân từng mô hình cụ thể được phân biệt bởi chính toàn từ \(L \). Trong thuyết văn, lớp mô hình ngẫu nhiên đặc biệt quan trọng là lớp mô hình ngẫu nhiên Markov. Từ chuỗi dòng chảy nhận tạo (mô hình) có chiều dài n tiến hành xây dựng bộ thông số \(\theta \), tương ứng với bộ thông số thực do. Ta nói rằng chuỗi dòng chảy mô hình tương tự với chuỗi thực do nếu:

\[\lim_{n \to \infty} \theta_i = \theta \quad \text{với mọi } i. \]

Nếu vậy \(\theta \) là ước lượng thu được từ chuỗi quan trắc có chiều dài \(n \), nhưng trong khi mô hình hoá, \(\theta \) động vai trò đặc trưng của tổng thể. Hiện hiện lân mô hình hoá không góp phần làm tăng thông tin trong việc xác định các thông số \(\theta_i \) mà ngược lại, chính các thông số \(\theta_i \) là cơ sở của việc mô hình hoá. Do vậy, khi bắt đầu mô hình hoá, bộ thông số \(\theta_i \) đã phân được xác định đủ tin cậy. Điều này hoàn toàn phụ thuộc vào chiều dài \(n \) của chuỗi quan trắc \(X_1 \). Việc bổ sung thông tin (phức hồi số liệu) về dòng chảy của chuỗi quan trắc được thực hiện bởi các mô hình tâp thể “mura - dòng chảy” đã được trình bày trong phần trên.

10.7.1. BỘ THÔNG SỐ THÔNG KÊ CỦA CHUỖI DÔNG CHÁY

Chuỗi dòng chảy ở đây không chỉ đơn thuần là chuỗi dòng chảy nâm. Trong việc thiết kế hồ chứa hoặc hệ thống thủy lợi phải căn đến chuỗi dòng chảy có thời đoạn ngắn hơn như chuỗi dòng chảy tháng. Dòng chảy tháng \(j \) năm \(t \) được quy ước ký hiệu \(X(t,j) \). Cấu trúc xác suất của chuỗi dòng chảy được đánh giá bởi bộ thông số sau:

1. Trị số bình quân (ky vọng toán):

\[M(j) = \frac{1}{n} \sum_{i=1}^{n} X(t, j) \]

2. Phương sai:

\[\sigma^2(j) = \frac{1}{n} \sum_{i=1}^{n} [X(t, j) - M(j)]^2 \]

3. Hệ số lệch:

\[C_s(j) = \frac{1}{n} \sum_{i=1}^{n} \frac{|X(t, j) - M(j)|^3}{\sigma^3(j)} \]

166
10.7.2. Mô hình hoá chuỗi dòng chảy năm

Quá trình dao động chảy có thể quy ước tách làm 2 bộ phận: a) dao động dòng chảy năm và b) dao động dòng chảy trong năm. Chuỗi dòng chảy năm có thể được coi là 1 xích Markov đơn - đúng. Do sự phân biệt, 2 bộ phận này được mô hình hoá riêng biệt và sau đó tiến hành kết hợp lại. Như vậy, mô hình hoá chuỗi dòng chảy có thể chia làm 2 giai đoạn:

1. Mô hình hoá chuỗi dòng chảy năm.
2. Xét phần phổ dòng chảy trong năm.

Với gia thiết chuỗi dòng chảy năm tuân theo luật phân bố xác suất Gamma (Pierson III), mô hình hoá chuỗi dòng chảy năm được thực hiện theo công thức truy hồi:

$$K_{i+1} = 1 + r(k_{i} - 1) + \Phi_{i,i} C_{i} \sqrt{(1 - r^{2}) + 2r(1 - r)k_{i}}$$

trong đó K_{i+1} hệ số módun dòng chảy năm thứ $(i + 1)$, được xác định theo giá trị K_{i} của năm đứng trước, có xét tương quan dòng chảy 2 năm kế nhau $(r - hệ số tương quan giữa K_{i+1} và K_{i}). Hai số lượng đầu trong công thức truy hồi biểu diễn triều bình quân có điều kiện K_{i+1} theo K_{i}. Ki mô hình hoá chuỗi dòng chảy năm, cần
phải xét sự phân bố ngẫu nhiên xung quanh trung bình quân đội kiểm K_{i+1}. Sự phân bố này được xác định bởi đường tần suất tại điểm với các thông số:

a. Trung bình quân đội kiểm

$$K_{i+1} = l + r(K_{i}-1)$$

b. Hệ số C_v diều kiến

$$C_{v_{i+1}} = \frac{C_v (1 - r^2) + 2r(1-r)K_i}{1 + r(K_i - 1)}$$

c. Hệ số C_s diều kiến

$$C_{s_{i+1}} = \frac{2C_s (1 - r^3) + 3r(1-r)^2K_i}{(1-r)^2 + 2r(1-r)K_i}$$

Số hạng thứ 3 trong phương trình truy hỏi phân phán hàng đầu động của đại lượng ngẫu nhiên diều kiến xung quanh ký vọng của nó.

$$K_{i+1} = \bar{K}_{i+1} + \phi_{i+1} C_{s_{i+1}}$$

Kỹ thuật tạo chuỗi động chay năm gồm 3 bước sau:

1. Phát số ngẫu nhiên η_{i+1} và coi nó động vài trải tổ tần suất.
2. Xác định ϕ_{i+1} (khoảng lệch tiêu chuẩn diều kiến) theo η_{i+1}, $C_{v_{i+1}}$, $C_{s_{i+1}}$.
3. Tính K_{i+1} theo công thức truy hỏi và lưu lượng bình quân năm

$$Q_{i+1} = Q_0 K_{i+1}$$

với Q_0 chuỗi động chay năm.

Bằng thuật toán này, chúng ta đã biên đối chuỗi số ngẫu nhiên

$$\eta_1, \eta_2, \ldots, \eta_n$$

thành chuỗi động chay năm nhân tạo có độ dài n tùy ý:

$$Q_1, Q_2, \ldots, Q_n$$

10.7.3. Xét phân bố động chay trong năm

Để mô hình hóa chuỗi dòng chay có xét phân phối không đều trong năm, viễn sỹ G.Svanidze đề xuất phương pháp Fragmen.

Fragmen $q(t)$ là đường quá trình lưu lượng biểu diễn dưới dạng phân đoạn với lưu lượng bình quân năm \bar{Q}. Việc chia các lưu lượng cho từng một hàng số làm thay đổi đường quá trình, trong khi đó vẫn bảo toàn các mối quan hệ thống kế bên trong giữa dòng chảy giữa các tháng. Các mối quan hệ này rất phức tạp và đặc tính của chúng chưa được khám phá.

Ngoài các mối quan hệ giữa dòng chảy các tháng trong năm, còn cần giải quyết mối quan hệ giữa lưu lượng động chay năm với hình dạng đường quá trình. Hiện nay, lưu lượng bình quân năm là một chỉ tiêu đánh giá mức độ nước của một năm, và giữa nó với tần suất dòng chay tồn tại mối quan hệ hàm số. Vậy, giữa tần suất dòng chảy và hình dạng đường quá trình lưu lượng có tồn tại mối quan hệ nào không? Hay nói cách khác: Những năm nhiều nước ($P < 0,33$), những năm trước trung bình ($P = 0,33 \div 0,66$), những năm ít nước ($P > 0,66$) số liệu có dạng phân phối dòng chảy trong năm khác biệt hơn? Về chỉ tiêu đánh giá hình dạng đường quá trình lưu lượng có thể chọn hệ điều tiết dòng chảy tự nhiên φ (do Xokolovski đề xuất)
hay hệ số phân phối dòng chảy không đều trong năm d (do Andrâyanov đề nghị). Giữa hai hệ số này tồn tại mối quan hệ: $\varphi + d = 1$.

Thay ràng $q = Q/\overline{Q}$ là các hệ số mốt do có tỷ số bình quân $q = 1,0$: φ - phân đoạn chảy cơ bản của quá trình; \overline{d} - phân đoạn chảy Lastly. Các tỷ số φ thì đòi hỏi nằm và tỷ số φ bình quân trong chạy kỳ quan trắc năm sẽ điều chỉnh dinh dưỡng của một con sông. Những công trình nghiên cứu về lĩnh vực này cho thấy hệ số φ phụ thuộc vào cảnh quan địa lý và các điều kiện tự nhiên khác của lưu vực và biến động trong một diện rộng từ 0,1 cho các vùng bán sa mạc đến 0,85 cho các vùng sông cạn uốt (có mặt độ ao hồ 20%).

Chọn φ hoặc d làm thông số hình dạng, có thể tiến hành xác định giá trị φ cho từng năm đó với một con sông cụ thể và xây dựng quan hệ tần suất dòng chảy năm P. Đặc điểm của mối quan hệ này rất khác nhau, với nhiều sông đó là một quan hệ tuyến tính, đối khi nghịch binh. Trong nhiều trường hợp có thể mối quan hệ này không tồn tại. Để xét mối quan hệ giữa lượng dòng chảy năm với dạng phân phối dòng chảy trong năm, các Fragmen được phân loại và dựa vào các "hợp đồ" khác nhau. Các hợp đồ được xép theo mặc độ nhiều nước, ít nước. Chẳng hạn có thể phân chia ba loại hợp đồ: hợp ít nước, bao gồm những Fragmen có tần suất dòng chảy lớn hơn 0,66; hợp nước trung bình có $P = 0.33$, $P = 0.66$ và hợp nhiều nước có $P < 0.33$. Sơ hợp đồ có thể từ 3 đến 10, phụ thuộc vào mức độ chất chê của quan hệ giữa φ và P. Theo kinh nghiệm thực tế, số hợp nên lấy từ 3 đến 5. Việc tăng số hợp không đưa đến một sự chính xác hoá nào thêm, mà đối khi tạo ra thưa.

Phương pháp Fragmen đôi hồi 2 phép thử ngoại niên, (phát 2 chung số ngoại niên η và γ). Chuỗi ψ dùng để tạo chuỗi lưu lượng bình quân $Q(t)$ theo thời toàn mà ở phân trên. Sau khi có Q, tiến hành chọn "hợp đồ" Fragmen. Dạng Fragmen cụ thể được xác định theo sơ ngoại niên thứ 2 γ theo sơ do rút ngoại niên một quá câu có tính số ra khỏi "hợp đồ" đã chọn và sau đó lại hoàn trả lại. Bằng cách nhận các tùng đồ của Fragmen được chọn với lưu lượng bình quân \overline{Q} sẽ có lượng quá trình lưu lượng mô hình. Xác suất lặp lại nguyên vốn một quá trình lưu lượng rất nhô và bằng $1/n$. \overline{Q}, trong đó n là tổng số Fragmen (bằng tổng số năm quan trắc) n - độ dài chuỗi mô hình 1000 năm được tạo ra từ 50 Fragmen, xác suất lặp lại một trong số 1000 đường là 0,0005. Phương pháp Fragmen cũng được luận chứng trên phương diện lý thuyết. TheoV. C Pugartov, một hàm ngoại niên bất kỳ có thể được biểu diễn dưới dạng một số tổ hợp tuyến tính các hàm ngoại niên cón ban đầu sau:

$$X(t) = \alpha f(t),$$

trong đó α - đại lượng ngoại niên thông thường, còn $f(t)$ hàm số không ngoại niên. Đồ gọi là phép phân tích chính tác hàm ngoại niên. Một tập hợp bất kỳ các hệ hiện của hàm ngoại niên $X(t)$ có thể thay được bằng cách biến đổi gồm tóm tắt lý do để đó $X(t)$ theo thực tông. Ở đây tất cả các tính ngoại niên được tập trung vào hệ số α, còn mỗi phụ thuộc của nó vào thời gian được tập trung vào hàm $f(t)$.

Phương pháp Fragmen cũng dựa trên việc áp dụng các hàm ngoại niên cơ bản:

$$Q(t) = \overline{Q} - q(t),$$

trong đó tinh ngoại niên được tập trung vào lưu lượng bình quân \overline{Q}, còn tính phụ thuộc thời gian được biểu hiện qua Fragmen $q(t)$.

10.8. CÁC PHƯƠNG PHÁP XÁC ĐỊNH THÔNG SỐ

Việc xác định các thông số của mô hình toán học rất quan trọng và ảnh hưởng trực tiếp đến kết quả tính toán. Mô hình tính toán đủ để áp dụng ở một số lưu vực cho kết quả rất tốt, nhưng rất khó áp dụng
được ở lưu vực chúng ta đang cân tính toán, nếu như không tìm được giá trị các thông số của mô hình.

Với những mô hình ít thông số, việc xác định các thông số tối ưu có thể làm bằng tay kết hợp với đồ thị, ví dụ tìm hai thông số x, k của phương pháp Muskingum, nhưng khi thông số của mô hình tăng lên với hàng chục thông số thì việc tính toán các thông số tối ưu sẽ chỉ thực hiện được trên máy tính điện tử.

Nói chung, việc giải bài toán tối ưu gồm 3 giai đoạn:
- Lập mô hình toán học để mô tả các quá trình thực tế.
- Lựa chọn hàm mục tiêu, tức là chọn tiêu chuẩn đánh giá kết quả.
- Xác định các giá trị tối ưu của các thông số.

Giai đoạn đầu đã được xét ở các tiết trước, bây giờ chúng ta nghiên cứu tiếp giai đoạn cuối.

1. Hàm mục tiêu
Hàm mục tiêu được định phô biến nhất trong thuy văn có dạng:

\[F = \sum_{i=1}^{n} (Q_d - Q_t)^2 \] (10.69)

với \((Q_d - Q_t)\) là chênh lệch giữa giá trị do và giá trị tính toán ở thời điểm \(t = i \Delta t \) với \(i = 1, 2, 3...n \). Đánh giá theo hàm mục tiêu dạng (10.69) rất đơn giản, dễ dàng nhưng có nhiều điểm là rõ nhất sai số tính toán bất kỳ ở thời điểm nào cũng có ý nghĩa như nhau. Thực tế khi tính toán lũ, những sai số gây ra ở phần thượng không quan trọng là, còn sai số gây ra ở phần đỉnh lũ thì tác hại lớn hơn, do đó người ta chọn hàm mục tiêu cố dạng:

\[F = \sum_{i=1}^{n} \left[\left(\frac{1}{m} \sum_{j=1}^{m} (Q_d - Q_t)^2 \right) + 2\left((Q_{dm} - Q_{tr}) \right)^2 + 5(T_d - T_t) \right] \] (10.70)

hoặc có dạng:

\[F = \sum_{i=1}^{n} \left[\frac{Q_{dm} - Q_{tr}}{Q_{dm}} + \frac{T_d - T_t}{T_d} + \frac{L_d - L_t}{L_d} \right] \] (10.71)

trong đó \(i \) là số lần lũ được tính \(i = 1, 2...n \) còn \(j \) là số thời đoạn tính toán trong 1 lần lũ \(j = 1, 2...m \). \((Q_d - Q_t)\) là chênh lệch giữa lưu lượng thực do \(Q_d \) và lưu lượng tính toán \(Q_t \) ở thời điểm \(t = j \Delta t \) tính từ khi bắt đầu lũ \(Q_{dm} \) là lưu lượng đỉnh lũ thực do, còn \(Q_{tr} \) là lưu lượng đỉnh lũ tính toán. \(T_d, T_t \) trong ứng là thời gian lũ thực do và tính toán. \(L_d, L_t \) là thời gian kéo dài của lũ lụt thực do và tính toán. Nói chung tất cả hàm mục tiêu sử dụng trong thuy văn đều là hàm phi tuyến của các thông số, do đó việc lựa chọn các thông số tối ưu thường phải tính qua nhiều lần lập.

2. Lựa chọn thông số tối ưu: Có hai phương pháp thường hay sử dụng nhất:
- Phương pháp đồng thời hoặc độc nhất: Cho hàm mục tiêu \(F \) với \(n \) thông số: \(x_1, x_2,..., x_n \)

\[F = F(x_1, x_2,..., x_n) = F(x) \]

Để cho gọn ta dùng toàn từ \(V \). Nếu \(f \) là một hàm số nồng độ trong không gian ba chiều \(x,y,z \) thì \(\nabla f \) là một vectơ.

\[\nabla f = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \]

với \(i, j, k \) là ba vec to đơn vị chỉ phương các trực \(0x, 0y, 0z \) trong hệ trục toa độ Đê các. Hàm mục tiêu \(F \) có \(n \) thông số nên nó được biểu diễn trong không gian \(n \) chiều. Người ta đã chứng minh rằng nếu như hàm
mục tiêu F là liên tục và ∇F tại X^* là xác định thể vectơ $\nabla F(X^*)$ biểu thị phương ngữ nhất đi về phía cực trị của hảm $F(x)$. Quá trình tìm thông số để hàm $F(x)$ nhỏ nhất đã trình bày ở phần trước.

- Theo phương pháp Rosenbroc: Phương pháp này công bố vào năm 1969 và đang được ứng dụng rộng rãi trong nhiều ngành khác nhau. Nội dung của thuật toán là xét hàm mục tiêu dưới dạng ma trận n chiều từ đó giải ma trận tìm định thức phong hop qua các phép tinh lập để lựa chọn các thông số để hàm mục tiêu $F(x)$ đạt giá trị nhỏ nhất.

10.9. KẾT QUẢ NGHIÊN CỨU ỨNG DỤNG MÔ HÌNH TOÁN THỦY VĂN Ở VIỆT NAM

Những thành tựu cơ bản trong lĩnh vực ứng dụng, nghiên cứu mô hình toán thủy văn ở Việt Nam được phản ánh khá đầy đủ trong Hội thảo Quốc gia về ứng dụng mô hình toán thủy văn và thủy lực trong phát triển và quản lý tài nguyên nước tại Hà Nội năm 1988. Mô hình được hoàn chỉnh và sớm có ứng dụng tại Việt Nam là mô hình SSARR đầu tiên ở lĩnh vực thủy văn công trình và sau đó được nghiên cứu ứng dụng cho dự báo lũ ở khu vực đồng bằng sông Cửu Long có tính đến ảnh hưởng triều và các pha lũ trên bờ. Mô hình SSARR cũng được cải tiến và ứng dụng để dự báo lũ cho sông Hồng - một hệ thống sông phức tạp của đồng bằng Bắc Bộ, trước đây cho những kết quả đáng kinh ngạc.

Mô hình TANK được ứng dụng ở Việt Nam vào cuối những năm 1980. Mô hình trong độ ổn định, có ý nghĩa rất lý thuyết quan, thích hợp với các lưu vực sông suối vưa và nhỏ.

Một số mô hình truyền thống đã được áp dụng từ trước như mô hình Kalinin - Miuliacp, phương pháp điện toán lượng giá nhập khu vực được vận dụng khá linh hoạt trong các lĩnh vực tính toán và dự báo thủy văn.

Việc kết hợp các phương pháp truyền thống và các mô hình SSARR, TANK, NAM... đang được triển khai trong nhiều dự án nghiên cứu ứng dụng.

Kết quả sử dụng các mô hình SSARR, TANK, NAM cho các lưu vực sông suối nhỏ cho thấy các đặc trưng trung bình của dòng chảy năm, dòng chảy mùa và các tháng cùng như phân phối dòng chảy tính từ các mô hình trên đạt yêu cầu về độ chính xác cho giai đoạn quan trọng.

Ngoài ra các mô hình chuỗi thời gian, mô hình ARIMA cũng được ứng dụng có hiệu quả trong việc mô phỏng và dự báo dòng chảy tháng, dòng chảy năm.
Chương 11
QUẢN LÝ CHẤT LƯỢNG VÀ BẢO VỆ MÔI TRƯỜNG NƯỚC

Ngôn ngữ rất phong phú bao gồm ngôn ngữ mặt và ngữ ngầm trong lòng Trái Đất.

Nước là thành phần cơ bản của cơ thể sinh vật, là môi trường của sự sống. Ngày nay mục đích phát triển của kinh tế rất nhanh, nhu cầu về nước ngày càng tăng. Vấn đề sử dụng hợp lý nguồn nước và bảo vệ nguồn nước trong nước là một vấn đề lớn, cần thiết đối với con người hiện nay và trong tương lai.

Đáp ứng yêu cầu trên, đối với các ngành dùng nước phải nghiên cứu các vấn đề:
- Đánh giá chất lượng của nguồn nước sử dụng.
- Đánh giá và dự báo mức độ nhiễm bẩn nguồn nước, nghiên cứu các biện pháp để hạn chế để đến loại trừ tình trạng ô nhiễm nguồn nước.

Đò cùng là hai nội dung chủ yếu giới thiệu trong chương này.

11.1. NGUỒN NƯỚC VÀ MÔI TRƯỜNG

Nước là một nguồn tài nguyên thiên nhiên, một thành phần của cảnh quan địa lý, của môi trường sống. Có nhiều khái niệm về môi trường sống (còn gọi là môi trường tự nhiên, môi trường xung quanh) trong đó một khái niệm gây càng được chấp nhận rộng rãi cho rằng "Trong môi trường sống, các hoạt động đa dạng và phức tạp của các sinh vật, đặc biệt là hoạt động của con người dẫn ra thương xuyên liên tục, đã gây ra những biến đổi Benson trong các yếu tố môi trường nói chung và nguồn nước tự nhiên nói riêng". Một trong những biến đổi đó là làm thay đổi chất lượng nguồn nước và ở một mức độ cao sẽ gây nên tình trạng ô nhiễm nguồn nước.

11.1.1. Ngôn ngữ trên Trái Đất

Nước sông trên bề mặt Trái Đất là 145.4.10^6 km^3 trong đó đại dương là 13700.10^6 km^3, còn lại là nước trên sông hồ, đầm lầy, nước bao tuyết ở địa cực. Trong phạm vi bề dày là 16km, lượng nước ngầm khoảng 400.10^6 km^3, khối lượng lớn nhất trong các nham thạch là khoảng 1800.10^6 km^3. Ngoài ra một phần nước ở dạng hơi chứa trong tảng khí quyển quanh Trái Đất.

Trong quá trình tuần hoàn của nước, mỗi năm mặt đất bốc hơi lượng 449.000 km^3, lượng khí tượng 71.100 km^3. Hơi nước từ biển theo gió vào lưu địa hình nằm gây mưa khoảng 108.400 km^3 nước. Như vậy tổng lượng nước chưng trên Trái Đất chỉ lượng nước này không đáng kể, nhưng nó lại có ý nghĩa với cùng quan trọng đối với đời sống con người và các sinh vật sống trên lưu địa. Đó là nguồn nước sử dụng của con người.
Người nước sử dụng của con người phân bố không đều theo không gian và thời gian. Theo không gian, do ảnh hưởng của điều kiện khí hậu, mặt đệm từng nơi mà lượng mua có thể rất khác nhau. Nơi mua nhiều lượng mua năm có thể myśli ngàn mm, nơi mua ít chỉ vài trăm mm, thậm chí không mua. Thị dụ lượng mua trung bình tại Hanoi 12.092, Rê-uy-ni- ông 12.000 mm, Ca-mo-run 10.470 mm và một số vùng xích đạo là những nơi mua nhiều.

Ở Việt Nam, mua rất phong phú, Tâm mua Bắc Quang thuộc thung lũng sông Lô, lượng mua năm biến đổi từ 1.500 đến 2.500mm. Mưa rất ít là các vùng sa mạc, lượng mua năm thường dưới 100mm. Trên toàn Trái Đất lượng mua năm bình quân là 880mm, trên các lúc địa từ 670 đến 750mm.

Về bốc hơi, bính quan năm trên các địa phương 930 đến 1.070mm, trên lực địa từ 420 đến 500 mm. Như vậy, trên đất sáng, lượng bốc hơi hàng năm lớn hơn lượng nước trên 100 mm, còn trên lực địa, lượng mua lớn hơn lượng bốc hơi dưới 250 mm.

Lượng nước thừa trên lực địa chính là lượng dòng chảy trên các dòng suối chảy ra đại dương. Do mua phân bố không đều mà lượng dòng chảy trên các sông suối cũng phân bố không đều. Trong 144,5. 10³ km² lực địa, có 6.10³ km² hoàn toàn không có dòng chảy. Một ít ao hồ ở những vùng đó chủ yếu là do nước ngấm cung cấp nên nước trong đời mặn.

Vùng dòng chảy rất giống khoảng 32 triệu km², trong đó châu Âu và châu Á 18 triệu km², châu Phi 9 triệu km², châu A và 4 triệu km², còn lại là một số vùng châu Nam Mỹ.

Vùng có dòng chảy rất phong phú thuộc lưu vực của 21 con sông từ 10 vận km² đến 1 triệu km² chiếm hết 28,4 triệu km². Sông Hồng và sông Mê Kông cùng thuộc lòng sông vựa có lượng dòng chảy lớn.

Theo thời gian, sự phân bố không đồng đều thể hiện đặc tính biến đổi theo mưa của mua và dòng chảy, do là mưa mùa và mưa khô hay mùa mưa và mùa khô. Mưa mùa, mưa cùng là mùa nước hay gây ứ ngập. Mưa khô, kết cùng là mùa thiếu nước cho con người.

Mức độ phát triển kinh tế không đều trên thế giới khiến cho nhu cầu sử dụng nước cũng không giống nhau giữa các nước, các khu vực. Văn đề thừa nước, thiếu nước trở thành vấn đề quan trọng đối với sự phát triển của loài người hiện tại và tương lai.

11.1.2. Sử dụng nguồn nước mặt, nước ngầm

1. Nhu cầu sử dụng nước

Có thể phân thành hai loại nhu cầu sử dụng nước, nhu cầu nước cho sinh hoạt và nhu cầu nước cho các ngành kinh tế công nghiệp, giao thông vận tải. Ngày nay, nhu cầu nước bình quân tối thiểu cho sinh hoạt của mỗi người/ngày là 5lit. Ở các nước phát triển, nhu cầu nước mỗi người bình quân trên 500 lít/ngày. Chỉ tính ở mức nước 250 lít/ngày thì một triệu dân Hà Nội mỗi ngày cũng cần 25 vạn m³, trong năm có thể dùng cạn hai hồ chứa như hồ Sơn Mê Kông (Hà Tày), từ đó cho thấy lượng nước dùng cho sinh hoạt con người không phải là nhỏ, nhất là trong các nước phát triển. Trong ngày, với 4,7 tỷ dân số thể giới, nhu cầu nước sinh hoạt từ 9 đến 10 tỷ m³ mỗi ngày. Dự tính sau năm 2.000 dân số thể giới đến trên 6 tỷ người, khi đó nhu cầu nước sinh hoạt sẽ còn lớn hơn nhiều.

Nhu cầu nước cho các ngành kinh tế cũng rất lớn, chủ yếu cho công nghiệp và nông nghiệp. Đối với nông nghiệp, nước là nhu cầu thiết yếu cho sinh trưởng và phát triển của cây trồng. Việc đảm bảo nhu cầu nước cho cây trồng có tác động quyết định đối với năng suất cây trồng. Vi vậy việc phát triển các biện pháp thủy lợi, đảm bảo chuồng trọt tiêu nước là rất quan trọng trong phát triển nông nghiệp. Nhu cầu nước dùng cho công nghiệp cũng rất lớn, nhất là trong các nước công nghiệp phát triển; nước dùng trong công nghiệp để rửa sạch các chất bẩn trong các vật liệu sản xuất, để nhà rửa vật liệu, làm dọn môi cho các
phần ứng hoa học trong quy trình sản xuất, làm người thiệt bì, làm lành sản phẩm... Thị dụ trong mỗi giây điện ở một nhà máy nhiệt điện 1 triệu kw căn từ 60 đến 70m3 nước để làm người may. Lượng nước cần để sản xuất ra một số loại sản phẩm công nghiệp được trình bày trong bảng sau.

Lượng nước trên chỉ mất từ 10 đến 15% trong quá trình sản xuất, còn lại nước chưa các chất bẩn, chất độc của quá trình sản xuất sinh ra gọi là nước thải công nghiệp. Nước thải công nghiệp chưa qua xử lýollochay vào nguồn nước sẽ gây nên tình trạng ô nhiễm.

2. Khai thác và sử dụng nguồn nước ngày nay

Nước là một tài nguyên thiên nhiên vô cùng quí giá, con người ngày càng có gang khai thác, sử dụng cả nguồn nước mặt và mặt nước ngầm. Mức độ khai thác sử dụng nguồn nước hiện nay còn khắc nhau giữa các nước, các khu vực.

Nguồn nước mặt được sử dụng, khai thác triệt để nhất vào mục đích phát điện. Nhiều nước trên thế giới tỷ trọng thủy điện trong toàn sản lượng điện quốc gia đã đạt tới đỉnh cao như Thụy Sĩ, Na Uy, Thụy Điển xấp xỉ 100%; Ái Nhĩ Lan, Cộng Ăng 95%, Cộng hòa Dân chủ Nhân dân Triệu Tiên 90%... Ngoài phát điện, nguồn nước mặt đã được sử dụng rộng rãi cho nhiều mục đích khác như nuôi trồng, nuôi cá, giao thông thủy, nước dùng cho công nghiệp... Nhắm hạn chế những ảnh hưởng phân bón nguồn nước mà không để gây ra các vùng, ngày này đã có nhiều hệ thống công trình, kênh dẫn lên được xây dựng để dẫn những lượng nước không lợ tưới vùng này sang vùng khác để sử dụng.

Trong số 37.000 tỷ m3 nước tuần hoàn trên địa lực trong một năm, lượng nước chưa được đắt đã gần 13.000 tỷ chiếm 35%. Cùng với khai thác sử dụng nguồn nước mặt, nguồn nước ngầm ngày càng được chú ý khai thác, cung cấp nước cho sinh hoạt, nước voi cho cây trồng. Ở Hung - ga - ri để bất đầu khai thác một tức nguồn ngầm từ lưu lượng khoảng 4.000 tỷ m3. Những nước có nhiều công trình khai thác nguồn ngầm hiện nay là Liên Xô (cụ), Mỹ, Hungari,.. vũng San pho ràng xít có đã có trên 2.000 may bom ngầm tươi cho 54.000 héc ta. Dung nước ngầm để cung cấp nước cho sinh hoạt thành phổ thì nước nào cũng có. Một số nơi trên thế giới khai thác nước ngầm quá mức đã gây ra tình trạng sự lún nghiêm trọng.

Tại những khu tập trung dân cư, khu công nghiệp ở những nước phát triển, nguồn nước được sử dụng triệt để nhưng tình trạng thiếu nước vẫn xảy ra tại nhiều nơi. Nguồn lại, nguồn nước đáng kể chưa được sử dụng trong những nước kém phát triển.

<table>
<thead>
<tr>
<th>Sản phẩm</th>
<th>Đơn vị sản phẩm (tấn)</th>
<th>Lượng nước cần (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nhôm</td>
<td>1</td>
<td>1500</td>
</tr>
<tr>
<td>Gang</td>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>Ca</td>
<td>1</td>
<td>2.500</td>
</tr>
<tr>
<td>Kẽn</td>
<td>1</td>
<td>1.400</td>
</tr>
<tr>
<td>Thép</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>Dầu hoa</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Giày</td>
<td>1</td>
<td>200-900</td>
</tr>
<tr>
<td>Soi</td>
<td>1</td>
<td>600</td>
</tr>
<tr>
<td>Ni lông</td>
<td>1</td>
<td>2.500-3.500</td>
</tr>
<tr>
<td>Chất deo</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>MEDIA</td>
<td>1</td>
<td>5.000</td>
</tr>
<tr>
<td>Nuốc châm</td>
<td>1</td>
<td>300</td>
</tr>
<tr>
<td>Mền</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Dương</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Luyện thép</td>
<td>1</td>
<td>165</td>
</tr>
<tr>
<td>Cán thép</td>
<td>1</td>
<td>140</td>
</tr>
<tr>
<td>Phản đam</td>
<td>1</td>
<td>630</td>
</tr>
<tr>
<td>Phản lân</td>
<td>1</td>
<td>130</td>
</tr>
<tr>
<td>Vải</td>
<td>1.000m</td>
<td>50</td>
</tr>
</tbody>
</table>
3. Vấn đề thiếu nước

Trước đây vài thế kỷ, vấn đề thiếu nước chưa được đặt ra, vì với mức phát triển xã hội thời đó, nhu cầu nước của con người chưa phải là lớn. Hơn nữa, dân số thế giới còn thấp so với hiện nay. Ngày nay hiện trạng đã khác hẳn. Dân số thế giới đầu thế kỷ XX là 1.617 triệu người và dự kiến năm 2020 lượng nước tiêu thụ trên thế giới dùng trong tuổi khoảng 7.000 tỷ m³, nước sinh hoạt 600 tỷ m³, nước cho công nghiệp 10.700 tỷ m³, cho nhu cầu khác 400 tỷ m³.

Ngày nay, tình trạng thiếu nước, ở những nguồn nước xảy ra tại nhiều nơi. Theo thống kê hiện nay đã có 60% diện tích đất đai trên thế giới thiếu nước, thậm chí thiếu cả nước trong sinh hoạt ở mức cân thiết. 150 triệu người đang cư trú trên diện tích đó. Để đánh giá mức độ thiếu nước trong từng khu vực trên thế giới, họ nghiện bán về nước của các nước Xã hội chủ nghĩa họp năm 1963 tại Vacsava đã đề nghị dùng hệ số C biểu thị mức độ thiếu nước như sau:

Hệ số C là tỷ lệ giữa tổng lượng dòng chảy trong năm của khu vực trên tổng lượng nước tiêu thụ của khu vực đó, tính theo tiêu chuẩn 250 m³ một người.

\[
C = 20 \text{ người} \times \text{ước đếm} \times \text{nước} \times \text{tương đối cao}.
\]

\[
C = 20 \times 10 \text{ người} \times \text{nước} \times \text{ước đếm} \times \text{nước} \times \text{tương đối cao}.
\]

\[
C = 10 \div 5 \text{ người} \times \text{ước đếm} \times \text{nước} \times \text{nước} \times \text{tương đối cao}.
\]

\[
C < 5 \text{ thiếu nước nghiêm trọng}, \text{cân có biện pháp khắc phục cung cấp thêm}
\]

11.1.3. Ánh hưởng của môi trường đối với chất lượng nước sông, vấn đề ở nhiễm nước hiện nay

Môi trường địa lý, nơi nguồn nước hình thành và vận chuyển không ngừng có ảnh hưởng rất nhiều đến chất lượng nước sông. Phân tích các đặc tính hoá học của nước và liên hệ với những đặc điểm địa chất, thời gian, tình hình hoạt động kinh tế của con người của lưu vực sông có thể thấy giữa chúng có một mối quan hệ khá rõ ràng. Sông Hồng tạo ra có hàm lượng phù sa lớn nhất thế giới (hàm lượng phù sa trung bình ở trầm Son Tây là 1,3kg/m³, mùa mưa đến 3,5 kg/m³, cực đại đến 14 kg/m³). Đó là kết quả của quá trình xâm thực của dòng sông trên nền thoát những di chỉ của vung sông chảy quanical hoạt động của con người làm ảnh hưởng đến chất lượng nguồn nước và là nguyên nhân chính gây ô nhiễm nguồn nước hiện nay. Ánh hưởng này một mặt trực tiếp gây ra do các nguồn nước thái sinh hoạt, rác nuôi các khu dân cư, do thải, mất khả năng tiếp quan của làm thay đổi các thành phần cần cạn quan di động là ảnh hưởng chất lượng nguồn nước được tích lũy từ năm ấy sang năm khác, với tốc độ càng tăng dần, quy mô càng lớn dần, gây ra hậu quả ô nhiễm nguồn nước. Tốc độ phát triển ô nhiễm nguồn nước phụ thuộc nhiều yếu tố, trong đó quan trọng là mức độ phát triển kinh tế, mức tăng dân số và tình hình sử dụng, bảo vệ nguồn nước của môi trường. Tính trạng ô nhiễm nguồn nước hiện nay đã trở nên trầm trọng ở nhiều nước, nhất là những nước phát triển. Ở Mỹ, hàng chục các trung tâm công nghiệp thì ra khoảng 94 tỷ m³ nước thái có độc.

Lượng nước thái này tập trung trong những khu vực nhất định, nên nước ở nhiều sông bị ô nhiễm lớn mức không dung được. Nhiều sông hồ, sinh vật bị tuyệt diệt hoàn toàn do chất độc.

Ở Việt Nam nguồn nước tự nhiên rất phong phú, chưa được sử dụng đầy đủ. Nói chung mức độ tập trung dân cư và khu công nghiệp còn rất thấp nên tính ô nhiễm nguồn nước chưa thành trầm trọng.
Tuy nhiên, do tình trạng nước thái nhân mà gây công nghiệp chạy ra các sông không qua xử lý ở nghiêm, nên từng nơi, từng lực lượng nhỏ bị nhiễm nguồn nước đã lên tới mức độ bảo đảm, nhất là các doanh nghiệp quan trọng nhất mà gây công nghiệp Việt Nam. Kết quả phân tích mẫu nước thái nhân mà gây công nghiệp çeşitli chất lượng nước thái nhân mà gây nhiễm qua quá trình chất lượng phát triển nền kinh tế của đạt nước ta.

11.1.4. Ảnh hưởng của các công trình thủy lợi, đập nước trên môi trường

Việc xây dựng các công trình thủy lợi, đập nước lớn, hệ thống thủy lợi công trình khai thác nước ngầm sẽ gây nên những biến đổi đáng kể đến tính hình nguồn nước, khí hậu địa phương, đối lập xâm thấm, lượng các chất dinh dưỡng, phù sa... trong khu vực công trình và vùng hạ lưu công trình.

Trong vấn đề này, việc phân tích những ảnh hưởng của đập nước lớn trên môi trường là một vấn đề được chú ý nhiều và một số kết luận đã được rút ra từ nghiên cứu thực tế của nhiều người. Ảnh hưởng này bao gồm những kết luận sau:

1. Tạo nên một kiểu khí hậu địa phương nhưng khu vực hồ. Sau khi xây dựng đập do một vùng rất rộng thuộc lòng hồ bị ngập nước, lớp phù thuỷ tự nhiên được thay bằng diện tích mặt nước hồ, làm tăng khả năng lượng bơi lội, làm biến đổi độ ám, nhiệt độ, tính hình mưa...

2. Làm biến đổi tính hình nguồn nước (nuóc mặt, nước ngầm), do tăng những tổn thất thấm vào lòng hồ, tồn tại bơi lội ở mặt nước hồ. Ở những hồ không được điều tra tính toán kỹ càng, những tổn thất này có thể làm gián đoạn lưu lượng từ nguồn trong hồ chưa. Một số hồ trên thế giới đã áp dụng biện pháp chống bơi lội mặt hồ, như một số hồ lớn ở Mý, hồ Né-van (Lién Xô); người ta phun lên mặt hồ một lớp mens mỏng, chủ yếu là axít béo, và rửa có mạch các bồn điệu, có thể giảm 50% lượng tổn thất do bơi lội. Ở nước ta, lưu lượng mặt do bơi lội thường chiếm từ 5 đến 10% dung tích hữu ích của hồ chưa.

3. Xây ra quá trình bồi lưỡng trong lòng hồ của, trong nhiều năm sẽ làm giảm dinh dưỡng thổ cỏ của hồ và qua trình xâm thấm ở những đoạn sông hạ lưu đập, các kênh dân nước lớn và có thể ở những khu vực sông khá xa công trình.

4. Làm thay đổi chất lượng nước sử dụng ở hạ lưu, thđụ như giảm đăng lượng chất phù sa trong nước, lượng các chất dinh dưỡng, hoặc làm thay đổi độ mận ở những sông gần biển... những ảnh hưởng này trong một mức độ nhất định có thể gây tác động xấu tới môi trường sinh thái của cửa, làm giảm nguồn lợi cá tự nhiên của khu vực.

Ngoài đập nước, các công trình khác để khai thác sử dụng nguồn nước cũng đều có ảnh hưởng đến môi trường, thì dự hiện tượng sụt lún hạ tầng mục nước ngầm do khai thác nguồn nước quá mức gây nên, cũng đã xuất hiện và lan rộng ở nhiều nơi trên thế giới gây bão khô khá len cho con người.

11.2. KIỆN THỨC CƠ SỞ ĐỂ ĐÁNH GIÁ CHẤT LƯỢNG NƯỚC

Nuộc sông ngơi, hồ vô chứa nhiều các chất hữu cơ, vô cơ, các loại vi sinh vật khác nhau. Tý lệ thành phần của các chất trên có trong một mẫu nước phân nhận chất lượng nước của mẫu. Bởi vì những vị trí lấy mẫu, phân tích dinh tinh, định lượng, phân tích các chất trong mẫu nước trong phòng thí nghiệm là nơi dùng chú ý để đánh giá chất lượng và phát hiện tình trạng ở riêng nguồn nước.

11.2.1. Những thống số vật lý, hoá học, sinh học của chất lượng nước

Có ba loại thống số phân ứng các đặc tính khác nhau của chất lượng nước là thống số vật lý, thống số hoá học và thống số sinh học.
1. Thông số vật lý. Thông số vật lý bao gồm màu sắc, mùi, vị, nhiệt độ của nước, lượng các chất rắn lơ lửng và hòa tan trong nước, các chất đầu mỗi trên bề mặt nước.

2. Thông số hoá học. Thông số hoá học phản ánh những đặc tính hoá học hữu cơ và vô cơ của nước.

a) Đác tính hoá hữu cơ của nước thể hiện trong quá trình sử dụng ôxy hòa tan trong nước của các loại vi khuẩn, vi sinh vật để phân hủy các chất hữu cơ.

Nước tự nhiên nhiễm问道 hoà tổng quan không chứa những chất hữu cơ nào cả. Nước tự nhiên đã nhiễm bẩn thì thành phần các chất hữu cơ trong nước tăng lên, các chất này luôn biệt tác động phân hủy của các vi sinh vật. Nếu lượng chất hữu cơ càng nhiều thì lượng ôxy cần thiết cho quá trình phân hủy càng lớn, do đó lượng ôxy hòa tan trong nước sẽ giảm xuống, ảnh hưởng đến quá trình sống của các sinh vật nước. Phân ánh đặc tính của quá trình trên, có thể dùng một số thông số sau:

- Nhu cầu ôxy sinh học BOD (mg/l)
- Nhu cầu ôxy hoá học COD (mg/l)
- Nhu cầu ôxy tổng cộng TOD (mg/l)
- Tổng số các lon hữu cơ TOC (mg/l).

Các thông số trên được xác định qua phân tích trong phòng thí nghiệm màu nước thực tế. Trong các thông số, BOD là thông số quan trọng nhất, phản ánh mức độ nhiễm bẩn nước rõ rệt nhất.

b) Đác tính vô cơ của nước bao gồm độ mặn, độ cứng, độ pH, độ axit, độ kiềm, lượng chưa các ion Mangan (Mn), Clo (Cl), Sunfat (SO₄), những kim loại nặng như Thủy ngân (Hg), Chí (Pb), Crôm (Cr), Đồng (Cu), Kẽm (Zn), các hợp chất chưa Ni từ hữu cơ, amôniac (NH₃,NO₂, NO₃) và Phốt phát (PO₄).

3. Thông số sinh học. Thông số sinh học của chất lượng nước gồm loại và mật độ các vi khuẩn gây bệnh, các vi sinh vật trong nước phân tích. Đối với nước cung cấp cho sinh hoạt yếu cầu chất lượng cao, cần đặc biệt chú ý đến thông số này.

11.2.2. Nhu cầu oxy sinh học BOD

1. Khái niệm

Các chất bẩn trong nước phân lớn là các chất hữu cơ, chúng không phải là những chất độc cho các sinh vật sống. Chúng không ảnh hưởng đến độ pH. Trong nước, hầu hết các chất hữu cơ bị tác động phân hủy của các vi sinh vật trên các hợp chất đơn giản. Trong quá trình do sinh vật cần ôxy. Nếu lượng chất hữu cơ trong nước càng lớn và mật độ vi sinh vật càng cao thì lượng ôxy cần thiết cho quá trình phân hủy yếu cầu càng nhiều. Lượng ôxy cần thiết để các vi sinh vật phân hủy các chất hữu cơ trong một đơn vị màu nước là nhu cầu ôxy sinh học BOD. Đơn vị của BOD là mg/l. Thông thường để xác định BOD người ta phân tích màu nước trong điều kiện nhiệt độ 20°C trong thời gian 5 ngày. BOD do được gọi là BOD₅.

Phân tích BOD trong một màu nước thì nghiém chịu trong một bình thủy tĩnh có thể thấy quá trình sử dụng ôxy của tế bào vi sinh vật chính hai giai đoạn. Đầu tiên nhận thấy tế bào vi sinh vật dùng ôxy để phân hủy các chất hữu cơ, lạy năng lượng cho nó lớn lên. Giai đoạn này diễn ra trong khoảng từ 18 đến 36 giờ. Tiếp theo là giai đoạn các tế bào vi sinh vật dùng ôxy để ôxy hóa hay cho quá trình trao đổi chất bền trong các tế bào vi sinh vật. Giai đoạn này kéo dài hơn 20 ngày. Tốc độ của phân ứng trong giai đoạn đầu thường gấp từ 10 đến 20 lần tốc độ của giai đoạn sau, nên đường cong BOD trong giai đoạn đầu cũng rất độc, sau thời dàn.
2. Công thức BOD
Quá trình sử dụng oxy trong thí nghiệm trên có thể biểu thị dưới dạng công thức toán học như sau:

Gọi L là lượng oxy hòa tan trong nước. Trong quá trình sử dụng oxy của vi sinh vật, sự biến đổi của L theo thời gian có dạng:

$$\frac{dL}{dt} = -KL$$ \hspace{1cm} (11.1)

trong đó: K - hệ số tốc độ trung bình của phân ứng trung bình BOD.

Tích phân ta được:

$$L_t = L_0e^{-Kt}$$ \hspace{1cm} (11.2)

trong đó L_o - tổng số lượng oxy sử dụng trong phân ứng, L_t - BOD còn lại thời điểm t.

Đặt $y = L_o - L_t$, thì y là tổng số oxy đã sử dụng hoặc BOD đã sử dụng sau thời gian t, thì phương trình (11.2) có thể viết thành:

$$y = L_0(1 - e^{-Kt})$$ \hspace{1cm} (11.3)

hoặc

$$y = L_0(1 - 10^{Kt})$$ \hspace{1cm} (11.4)

trong đó: K' - hệ số tốc độ trung bình của phân ứng trên cơ sở số 10. Quan hệ giữa K và K' như sau:

$$K = 2,303K'$$

<table>
<thead>
<tr>
<th>Loại nước tải</th>
<th>$K'(1/ \text{ngày})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nước tải chưa xử lý</td>
<td>0,15 - 0,28</td>
</tr>
<tr>
<td>Nước tải đã qua bộ phân lọc</td>
<td>0,12 - 0,22</td>
</tr>
<tr>
<td>Nước tải đã xử lý vi sinh vật</td>
<td>0,06 - 0,10</td>
</tr>
<tr>
<td>Nước sông ít nhiễm bẩn</td>
<td>0,04 - 0,08</td>
</tr>
</tbody>
</table>

Trong phương trình (11.3) hệ số K phụ thuộc số lượng và đặc tính tự nhiên của những chất hữu cơ có trong nguồn nước tải. Đối với dòng nước tải giàu chất hữu cơ, tốc độ sử dụng oxy trong giai đoạn một rất nhanh nên hệ số K lớn. Đối với dòng nước tải xấu xử lý, lượng chất hữu cơ còn thấp, cho nên hầu hết lượng oxy dùng trong giai đoạn 2. Hệ số K trong trường hợp này thấp hơn ở trường hợp trên nhiều.

Hai hệ số K, K' đều là ảnh số trong phương trình BOD, chúng có thể tính toán gián tiếp dựa vào số liệu thực đo.

3. Sự oxy hóa trong phân ứng BOD.
Sự oxy hóa trong thí nghiệm BOD như trên xảy ra thành hai giai đoạn:

- Sự oxy hóa các hợp chất chứa các bon (các bon nát hoá) và oxy hóa các hợp chất chứa nitơ (nitơ rất hoá).
- Sự oxy hóa các hợp chất chứa các bon xảy ra đầu tiên và được thể hiện như phương trình BOD (11.3)

$$y = L_0(1 - e^{-Ks})$$

và theo quá trình

$$\text{CxHyOz} \rightarrow CO_2 + H_2O$$

Sự oxy hóa hợp chất chứa nitơ tiếp sau quá trình các bon nát hoá theo quá trình:

$$\text{NH}_3 \rightarrow \text{NO}_2 \rightarrow \text{NO}_3$$
với tốc độ chậm hơn.

Trong một số điều kiện, có thể cả hai quá trình ôxy hoá trên xảy ra đồng thời. Nhưng nói chung, sự ni tốc rát hoá chỉ bắt đầu khi nhu cầu các bon đã thoái mẫn. Biểu thức toán học của phần ứng sẽ gồm hai phần:

\[y = L_0(1 - e^{-K_1t}) + L_N(1 - e^{-K_2t}) \]

trong đó:
- \(L_0 \) - nhu cầu ôxy hoá tối đa cho các bon nat nat hoá;
- \(L_N \) - nhu cầu ôxy hoá tối đa cho nit rát hoá;
- \(K_1 \) - hệ số tốc độ của sự các bon nat hoá;
- \(K_2 \) - hệ số tốc độ của sự nit rát hoá.

11.2.3. COD, TOD, TOC

1. **COD** là nhu cầu ôxy hoá học tức nhu cầu ôxy hoá cần thiết cho ôxy hoá học các chất trong một đơn vị mẫu nước (mg/l). Nếu biết được phương trình phần ứng ôxy hoá hóa thì có thể tính được lượng COD theo lý thuyết. Thiết kế ôxy hoá 1.000mg phénol:

\[
\text{COD lý thuyết} = (1.000)(224)/94 = 2.383mg.
\]

Không phải tất cả các chất hữu cơ đều dễ dàng bị ôxy hoá hóa. Các loại đường, các chất béo có cấu trúc mạch phân nhánh thường dễ bị ôxy hoá hoàn toàn. Còn benzen, toluen không bị ôxy hoá. Các axít amin, các axit có cấu trúc mạch thẳng có thể hoàn toàn bị ôxy hoá khi có chất xúc tác là sunfat nhôm\((Ag_2SO_4)\) tham gia.

Ngoài các tính lý thuyết, COD cũng có trong số sấy "Những phương pháp kiểm tra chất lượng nước và nước thái".

2. **TOD** là nhu cầu ôxy tổng cộng, cần thiết cho hai quá trình ôxy sinh hoá (BOD) và ôxy hoá hóa (COD). Đơn vị mg/l.

3. **TOC** là tổng số các bon hữu cơ trong một đơn vị mẫu nước. TOC được xác định nhờ dùng cử phân tích các bon.

Trong thí nghiệm này, một mẫu nước, hoặc nước thái được đưa vào một ống với nhiệt độ từ 900 đến 1.000 °C, nước sẽ bốc hơi, các chất có các bon sẽ bị ôxy hoá hoàn toàn nhờ chất xúc tác C0 ban và lượng ôxy thừa qua. Lượng khí gồm CO\(_2\), O\(_2\) ở nước sẽ được dẫn đến bình ngưng tự, còn khí CO\(_2\), O\(_2\) tiếp tục dẫn đến máy phân tích hồng ngoại. Lượng các bon hữu cơ sẽ được xác định và vẽ trên biểu đồ bằng bộ phân tự ghi.

11.3. THANH PHÁN VÀ NGUỒN GỐC NƯỚC THÁI

Những chất bán, nước thái gây ô nhiễm nguồn nước có nguồn gốc từ:

- Nước thái sinh hoá, nước công nhân đó thị.
- Nước thái công nghiệp.
- Nước thái từ nông nghiệp chăn nuôi.

11.3.1. Nước thái sinh hoá

Nước thái sinh hoá thường chứa lượng nước lớn các chất hữu cơ trực tiếp chảy ra sông hồ qua hệ
thống công rắn thành phân bón, nước sông hổ và các ngươn khác gây ô nhiễm và chuyển di tạt cả các chất bàn. Ngày nay lượng nước sinh hoạt lớn hơn nhiều vì sự phát triển thành phố thường vượt xa ngoài dự kiến ban đầu, cùng như mật độ dân cư rất cao, các chất rắn hòa tan không lớn.

11.3.2. Nước thái công nghiệp

Đặc tính nước thái công nghiệp tuy thuộc vào ngành công nghiệp. Thì dụ một số ngành như:

- Công nghiệp thực phẩm: như sản xuất rượu bia, bơ sữa, chế biến các sản phẩm nông nghiệp, chăn nuôi...

Nước thái từ công nghiệp thực phẩm có thành phần trọng tự như nước thái sinh hoạt, nước công rắn do thi nhưng giữa các chất hữu cơ hơn.

<table>
<thead>
<tr>
<th>Thành phần</th>
<th>Phạm vi biên độ mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chất rắn hòa tan</td>
<td>100- 600</td>
</tr>
<tr>
<td>Tổng số chất rắn</td>
<td>450- 1.250</td>
</tr>
<tr>
<td>BOD(5 ngày tại 20°C)</td>
<td>100- 500</td>
</tr>
<tr>
<td>NH₃</td>
<td>5- 35</td>
</tr>
<tr>
<td>Chất hữu cơ chứa nitrơ</td>
<td>5- 50</td>
</tr>
</tbody>
</table>

- Nước thái từ công nghiệp đột, đa, giậy cũng nhiều chất hữu cơ có thể xử lý như nước thái sinh hoạt, tuy nhiên, việc xử lý hoà học đối khi trước quá trình xử lý bình thường.

- Nước thái từ công nghiệp sản xuất chất dốt như lọc đau, khai thác khí đốt,..., hoặc từ công nghiệp hoà học như sản xuất phân bón, hoá chất, thường chứa ít các chất hữu cơ, nhưng lại chứa nhiều chất hoà học, chất độc có hại cho môi trường sống.

11.3.3. Nước thái từ nông nghiệp, chăn nuôi

Nước thái từ nông nghiệp gồm chủ yếu lượng nước từ đang rưới qua quá trình canh tác chảy trở lại sông hồ. Người nước thái này chứa một lượng nhất định các chất hữu cơ, vô cơ trong thành phần các loại phân bón, một số chất độc có trong thuốc trừ sâu. So với nguồn nước thái sinh hoạt, nước thái công nghiệp, nguồn nước này ít gây ô nhiễm hơn, một phần chảy trực tiếp vào nguồn nước mặt trong quá trình tiêu nước, một phần thấm xuống đất cung cấp cho dòng chảy ngầm.

Trong khu vực chăn nuôi với quy mô lớn, lượng nước thái của chăn nuôi là rất đáng kể cần được chủ ý xử lý đúng mức.

11.4. CHẤT LƯỢNG NƯỚC DỤNG VÀ TIẾU CHUẨN CHẤT LƯỢNG NƯỚC

11.4.1. Chất lượng nước dùng

Mỗi ngành dùng nước yêu cầu một chất lượng nước khác nhau. Đối với phát điện và công nghiệp, do các công trình trên sông thường nằm ở thượng lưu của nguồn sinh ra chất ô nhiễm, nên có thể thiết cụm ý đến các chất ô nhiễm và ảnh hưởng của chúng tới chất lượng nước.

Đối với nước tiểu, cần chú ý hơn đến chất lượng vi các khu vực và đất canh tác thường tập trung ở hạ lưu sông và các nguồn gây ô nhiễm. Thông số quan trọng ảnh hưởng tới chất lượng nước tiểu là độ mặn,
dược do bằng tổng số chất rắn hòa tan (TDS) trong nước. TDS ảnh hưởng trực tiếp tới sự phát triển của cấy trồng. Khi TDS lớn hơn 1.000mg/l tốc độ phát triển của cấy sẽ bị hạn chế rõ rệt. Thông số khác là độ kiềm, biểu thị qua chỉ số hấp thụ Natri (Na) của nước, đây cũng là thông số quan trọng của chất lượng nước nước tuần.

Đối với nước dùng cho sinh hoạt đời hội chất lượng phải đặc biệt cao hơn các ngành dùng nước khác vì có liên quan trực tiếp tới sức khỏe của con người. Hiếm nay việc cung cấp nước cho sinh hoạt trong các nước phát triển và các nước đang phát triển có những đặc điểm khác nhau: Trong những nước phát triển, đa số cần dụng nước cung cấp từ các nhà máy cấp nước. Nước nước này lấy từ nguồn nước mặt hoặc nước ngầm, đa qua một quá trình lọc và xử lý làm sạch đặc biệt. Nước lại trong các nước đang phát triển và kém phát triển nguồn nước mặt vẫn còn được dùng chủ yếu và thức tế trong sinh hoạt của phần lớn dân cư không qua xử lý ở nghiêm. Từ đặc điểm này cho thấy nguồn nước mặt ở những nước đang phát triển phải được bảo vệ và phải đảm bảo chất lượng cao hơn so với yêu cầu chất lượng thông thường ở các nước phát triển.

Để bảo vệ sức khỏe con người, nước cung cấp cho sinh hoạt cần hoàn toàn tinh khiết, không màu không mùi, không có các vi khuẩn gây bệnh và duy trì mức thấp nhất các chất hữu cơ, vô cơ trong nước.

Chất lượng nước dùng cho công nghiệp có hai mức độ khác nhau: nước có chất lượng cao dùng trong các quá trình chưng cất công nghiệp hoá học dược, hấp của công nghiệp chế biến thực phẩm,... và nước có chất lượng thấp hơn dùng cho quá trình làm lạnh sản phẩm, làm người nhiệt bi, mỹ mộc. Nguồn nước ngầm, qua xử lý đặc biệt thường là nguồn chủ yếu cung cấp nước có chất lượng cao, còn nguồn nước mặt, cung cấp nước chất lượng thấp hơn cho công nghiệp.

Đối với nước cho nuôi cá cần khách bố hết những chất độc hại với đối với đối sống của cá. Anh hưởng của chúng phụ thuộc lượng chất độc. Anh hưởng nhiễm độc sẽ tăng khi nhiệt độ nước giảm thấp.

Trong các khu vực ở nghiêm, do nước thái sinh hoạt hay nước thái công nghiệp thực phẩm, lượng ôxy hòa tan trong nước sẽ giảm đi do sự phân hủy chất hữu cơ, do là nguồn thức ăn cho cá. Nhưng nếu lượng chất hữu cơ quá lớn so với nhu cầu của cá thì đó lại là nguyên nhân gây ô nhiễm, làm giảm lượng ôxy hòa tan, ảnh hưởng tới đối sống của cá. Như câu ôxy cho cá được nhiều người nghiên cứu và đã kết luận khoảng thời gian duy trì lượng ôxy hòa tan 4mg/l được coi là mức thấp nhất để cá có thể sinh sống được.

11.4.2. Tiêu chuẩn chất lượng nước

Tiêu chuẩn chất lượng nước định rõ giới hạn cho phép của chất lượng nước dùng và nước thai. Các tiêu chuẩn chất lượng nước được ban hành để đáp ứng yêu cầu chống ô nhiễm nguồn nước và bảo vệ nguồn nước tự nhiên trong sạch.

Có hai loại tiêu chuẩn chất lượng nước: tiêu chuẩn nước dùng và tiêu chuẩn nước thai. Tiêu chuẩn chất lượng nước dùng định rõ những thông số chất lượng chủ yếu và phạm vi biến đổi của nó cho mỗi ngành dùng nước.

Thị dụ: Tiêu chuẩn chất lượng nước dùng cho sinh hoạt quy định rõ giới hạn không vượt quá của các vi sinh vật trong nước, lượng các chất rắn hòa tan, thành phần các chất hoá học. Tiêu chuẩn nước dùng cho nuôi cá quy định giới hạn của độ pH, lượng ôxy hòa tan trong nước, nhiệt độ nước, lượng các chất độc trong nước.

Tiêu chuẩn chất lượng nước thái quy định giới hạn chất lượng cho phép của các dòng nước thái, nếu chúng mang các chất ô nhiễm có tỷ lệ cao thì phải được xử lý đạt được tiêu chuẩn này trước khi Thái ra nguồn nước sông ngòi. Tiêu chuẩn chất lượng nước thái có quan hệ chất chế tới chất lượng của nguồn nước, việc quy định chúng cần đảm bảo mức lan rộng và xem xét hiệu quả kiến thiết tối đa của việc bảo vệ nguồn nước trong sạch với vấn đề tự các công trình lọc, xử lý nước thái cho từng ngành sử dụng nước.
Trong quá trình phát triển kinh tế, các tiêu chuẩn chất lượng nước không ngừng được nâng cao do yêu cầu sử dụng nước và sự phát triển kỹ thuật xử lý nước thái.

11.5. PHÂN TÍCH NHỮNG ẢNH HƯỞNG Ô NHIỄM TRONG TỰ NHIÊN

Các loại chất bẩn, nước thái trong nước tự nhiên là phần tọ cơ bản gây nên biến đổi chất lượng nước theo thời gian và theo chiều dòng chảy.

Do là kết quả của sự truyền thủy động lực học, của các phản ứng sinh học, hóa học gây nên do hoạt động của các vi sinh vật, các loại thực vật nước, BOD và lượng ôxy hòa tan là những thông số chủ yếu, thay đổi mạng mẻ do quá trình ô nhiễm. Tính toán và dự báo những biến đổi của chúng là nội dung cơ bản trong phân tích những ẩn hưởng ô nhiễm ở nhiệm trong nguồn nước.

11.5.1. Số biến đổi và ôxy hòa tan trong khu vực ô nhiễm

Nước tự nhiên luôn có một lượng ôxy hòa tan nhất định, cần thiết cho quá trình sống của các sinh vật trong nước. Lượng ôxy này được cung cấp từ nhiều nguồn khác nhau, và nó cũng bị tiêu hao trong nhiều quá trình như ôxy hoà sinh học, hoá học, sự tiêu dùng của các sinh vật sống... Lượng ôxy hòa tan trong nước tối đa là mức ôxy hòa tan báo hòa, thường lấy bằng 9mg/l.

Khi nguồn nước tự nhiên bị ô nhiễm, đặc biệt do các dòng chảy nước thái sinh hoạt hoặc nước thái từ công nghiệp thực phẩm gây các chất hữu cơ, nhu cầu ôxy cần thiết cho các vi sinh vật để phân hủy các chất hữu cơ tăng lên, lượng ôxy này được lấy từ lượng ôxy hòa tan trong nước, như vậy ôxy hòa tan sẽ bị giảm đi, mức độ ô nhiễm càng tăng. Sự thiếu hụt ôxy này sẽ được bù do quá trình xả mạng ôxy từ không khí vào trong nước. Do đó sự xả mạng ôxy từ không khí sẽ tăng dần với sự thiếu hụt ôxy. Từ điểm này trái tốc độ xả mạng ôxy sẽ lớn hơn tốc độ sử dụng ôxy, đường cống ôxy hòa tan bắt đầu tăng và dòng chảy, cơ thể có từ điểm này trái di không chịu ảnh hưởng của ô nhiễm.

11.5.2. Nguồn cung cấp và tiêu thụ ôxy trong nước

1. Nguồn cung cấp ôxy

Lượng ôxy hòa tan trong nước chủ yếu do ôxy xả mạng từ không khí và ôxy sinh ra trong quá trình quang hợp của các loại rêu, tảo và thực vật trong nước cung cấp.

a) Lượng ôxy xả mạng từ không khí cung cấp cho nước tỷ lệ thuận với độ thiếu hụt ôxy phù thuộc mức độ xả trim nhiên loan trong nội bộ khí.

Sự xả mạng ôxy từ không khí vào nước có thể biểu thị bằng công thức:

\[\frac{dc}{dt} = \frac{K_l}{V} (C_s - C_l) \] \hspace{1cm} (11.5)

trong đó:

- \(C \) - lượng ôxy xả mạng từ không khí vào trong nước;
- \(A \) - diện tích mặt tiếp xúc với không khí;
- \(V \) - thể tích khối nước;
- \(C_s \) - mức ôxy hòa tan báo hòa;
- \(C_l \) - mức ôxy hòa tan hiện tại;
- \((C_s - C_l) \) - độ thiếu hụt ôxy hòa tan \(D \);
- \(K_l \) - hệ số truyền ôxy.
Gọi H là độ sâu dòng chảy trung bình trong sông nên $\frac{A}{V} = \frac{1}{H}$, phương trình (11.5) có thể viết:

$$\frac{dc}{dt} = \frac{K_1}{H} - D = K_2 D$$

(11.6)

trong đó: K_2 là hệ số xả nhập ôxy. Chú ý rằng $\frac{A}{V} = \frac{1}{H}$ chỉ áp dụng cho trường hợp mặt nước yên tính.

Với mặt nước nhiều dòng mảnh có thể lấy $\frac{A}{V} = 1.5 \frac{H}{H}$

Hệ số xả nhập K_2 phụ thuộc tốc độ chảy của dòng nước có thể xác định theo quan hệ:

$$K_2 = \frac{CV^n}{H^m}$$

(11.7)

trong đó: V - tốc độ dòng nước ; C - hệ số phụ thuộc đặc tính của dòng chảy; m và n - số mũ phụ thuộc những điều kiện chảy.

Hệ số xả nhập K_2 còn có thể tính theo công thức như công thức Thastown - Kerenco:

$$K_2 = 10.8 \left[1 + \left(\frac{v}{(gH)^{1/2}}\right)^{1/2} \left(\frac{Sg}{H}\right)^{1/2}\right]$$

(11.8)

trong đó: g - gia tốc trọng lực;

S - tốc độ mặt nước

K_2 - đơn vị là $l/ngày$.

b) Lượng ôxy do quang hợp phụ thuộc mặt độ tảo và năng lượng bức xạ mặt trời được tạo hấp thụ.
Trong nguồn nước có mặt độ tảo cao, tốc độ của quang hợp có thể giải thiết biến đổi theo hình sin và ôxy hòa tan trong nước, trong đó lượng ôxy hòa tan tăng dần trong thời gian ban ngày. Ban đêm lượng ôxy hòa tan lại giảm dần do sự dùng ôxy của tảo trong quá trình hô hấp của chúng.

2. Nguồn tiêu thụ ôxy hòa tan

Ôxy hòa tan trong nước bị tiêu thụ trong các quá trình ôxy hoá sinh học các chất hữu cơ trong nước, trong quá trình rỉ sét ở lỏp các chất lắng ở đáy, trong sự hô hấp của tảo và các loại thực vật trong nước.

a) Quá trình hô hấp của các loài thực vật cần một phần lượng ôxy hòa tan. Quá trình này xảy ra ban đêm, không phụ thuộc vào bức xạ Mặt Trời, có thể giải thiết tốc độ không thay đổi. Lượng ôxy hòa tan tiêu dùng trong hô hấp của tảo và thực vật nước biến đổi mảnh.

b) Quá trình ôxy hoá sinh học các chất hữu cơ BOD cần cho quá trình ôxy hoá sinh học có thể biểu thị dưới dạng:

$$L_x = L_0 e^{-\frac{K_1}{v}}$$

(11.9)

trong đó L_x - BOD tại vị trí x; L_0 - BOD tại $x = 0$

K_1 - tốc độ ôxy hóa trong dòng chảy, so với hệ số tốc độ phân ứng ôxy hóa trong ống của thí nghiệm BOD (hệ số K) thì K_1 luôn luôn lớn hơn K do sự xao trộn theo chiều dài dòng chảy và tác động của đáy sông.

c) Lớp chất lắng đọng ở đáy cũng dùng một lượng ôxy đáng kể cho sự rỉ sét chúng. Trong những sông nied tốc độ chảy ngắn, sự lắng đọng những hạt chất hữu cơ thơ có thể làm giảm BOD trong sông. Tại
những thời điểm khác, khi tốc độ dòng chảy tăng lên cũng có thể đưa trở lại dòng chảy những hạt này, làm tăng BOD trong dòng chảy. Lượng ôxy trong dòng chảy luôn được tạo ra trong lớp chất lắng dòng phía trên (lớp自豪 khí) cung cấp ôxy cần thiết cho quá trình thời gian chất hữu cơ. Sự dùng ôxy trong lớp chất lắng dòng có thể biểu thị theo phương trình của Moore và Thoma:

\[y_m = 3.14(10^{-2}) y_0 C_T W \left(\frac{5 + 160W}{1 + 160W} \right) \sqrt{t_a} \]

(11.10)

trong đó:

- \(y_m \) - nhu cầu ôxy lơn nhất hàng ngày (g/m³);
- \(y_0 \) - BOD5 của hợp chất lắng dòng tại 20 °C (g/kg)
- \(W \) - tốc độ lắng dòng ngày (kg/m²)
- \(t_a \) - thời gian lắng dòng (ngày);
- \(C_T \) - hệ số hiệu chỉnh nhiệt độ

11.5.3. Mô hình tính toán sự biến đổi BOD - Ôxy hòa tan theo chiều dòng chảy

Giả sử nước thải phân bố đều trên mặt cắt sông, đưa vào nguyên lý cân bằng ôxy, phương trình biến đổi của ôxy hòa tan trong hệ thống nước dạng xet có thể viết như sau:

\[\frac{\partial c}{\partial t} = \varepsilon \frac{\partial^2 c}{\partial x^2} - v \frac{\partial c}{\partial x} \pm \sum S \]

(11.11)

trong đó:

- \(C \) - biểu đồ ôxy hòa tan trong nguồn nước,
- \(v \) - tốc độ dòng chảy theo hướng x,
- \(\varepsilon \) - hệ số truyền nhiệt độ,
- \(S \) - nguồn cung cấp và tiêu thụ ôxy cho nguồn sông.

Với dòng chảy tự nhiên, sự xáo trộn rõ (thì dụ xáo trộn theo chiều dài dòng chảy) không đáng kể, phương trình trên có thể viết gọn thành:

\[\frac{\partial c}{\partial t} = -v \frac{\partial c}{\partial x} \pm \sum S \]

(11.12)

Giả sử nguồn cung cấp tiêu thụ ôxy gồm:

- ôxy xâm nhập từ không khí \(K_2(Cs - C) \),
- ôxy cung cấp do quang hợp \(P \),
- Như cầu ôxy sinh học BOD = \(K,L \),
- ôxy cho hồ hấp của tao = \(R \),
- ôxy dùng trong lớp chất lắng ở đáy = \(S \).

Phương trình trên trở thành:

\[\frac{\partial c}{\partial t} = -v \frac{\partial c}{\partial x} - K_1 L + K_2 (C_s - C) + P - R - S \]

(11.13)

trong đó: \(C_s \) - mức ôxy hòa tan bảo hà; \(L \) - nhu cầu ôxy sinh học BOD; \(v \) - tốc độ dòng nước; \(x \) - khoảng cách trong trạng thái chảy ổn định \(\frac{\partial c}{\partial t} = 0 \) và do \((Cs - C) = D \) phương trình (11.3) có thể tích phân, đúng:
$L_x = L_0 e^{\frac{k_a x}{v}}$

sẽ được:

\[C = C_s - \frac{K_i L_0}{K_2 - K_1} \left(e^{\frac{S}{K_2}} - e^{\frac{S}{K_1}} \right) - (C_s - C_0) e^{\frac{S}{K_2}} \frac{R - D}{K_2} \left(1 - e^{\frac{S}{K_2}} \right) \]

(11.14)

\[D = \frac{K_i L_0}{K_2 - K_1} \left(e^{\frac{S}{K_2}} - e^{\frac{S}{K_1}} \right) + D_0 e^{\frac{S}{K_1}} \frac{R - D}{K_2} \left(1 - e^{\frac{S}{K_2}} \right) \]

(11.15)

trong đó:

D_0 - độ tiêu thụ ôxy hòa tan ban đầu; K_2 - hệ số xâm nhập ôxy từ không khí;

Nếu ảnh hưởng của tạo và lớp chất lắng đọng đến ôxy hòa tan không đáng kể thì dạng cuối cùng của phương trình (11.15) trở thành:

\[D = \frac{K_i L_0}{K_2 - K_1} \left(e^{\frac{S}{K_2}} - e^{\frac{S}{K_1}} \right) + D_0 e^{\frac{S}{K_1}} \frac{R - D}{K_2} \left(1 - e^{\frac{S}{K_2}} \right) \]

(11.16)

Đây là phương trình Strit to phép (Streeter - Phelps) thường được sử dụng rộng rãi để phân tích ảnh hưởng nhiễm bẩn nguồn nước tự nhiên.

Diểm tối hạn trong đường cong có thể xác định theo các phương trình sau:

\[D_e = \frac{K_i L_0 e^{\frac{-k_a x}{v}}}{K_2 - K_1} \]

(11.17)

\[x_e = \frac{v}{K_2 - K_1} \ln \frac{K_1}{K_2} \left[1 - \frac{D_0 (K_2 - K_1)}{K_1 L_0} \right] \]

(11.18)

\[t_e = \frac{x_e}{v} \]

Các hệ số K_1, K_2 trong các phương trình trên có thể tính toán dựa trên kết quả phân tích các tài liệu thực tế do chất lượng nước.

11.6. CÁC BƯỚC CÔ BÀN ĐỂ DỰ BÁO VÀ ĐÁNH GIÁ ÂNH HƯỞNG NHIỄM BẢN CỦA NGUỒN NƯỚC

Đối với các ngành dùng nước, tình toán và dự báo thay đổi trong chất lượng nước và ảnh hưởng của chúng có thể tiến hành theo những bước cơ bản sau:

1. Phân tích các loại nước thải, chất bẩn sinh ra từ tất cả các nguồn gốc khác nhau trong khu vực nghiên cứu và tính toán lượng các loại nước thải và chất bẩn đó.

2. Tính toán về số lượng và chất lượng của nguồn nước mặt trong khu vực. Nghiên cứu các dạng phân bố tần suất và đặc trưng thống kê của tài liệu thực tế về số lượng và chất lượng nước, nếu có thể, xem xét lịch sử của sự biến đổi chất lượng nước trong khu vực.

3. Tìm hiểu những tư liệu về những vấn đề ô nhiễm đã xảy ra hoặc đang xuất hiện trong nguồn nước mặt địa phương.

4. Nếu cần thiết cho chương trình nghiên cứu, diễn tả về số lượng và chất lượng của nguồn nước ngầm trong khu vực, chú ý đến độ sâu của mặt nước ngầm và hướng của dòng chảy ngầm. Tìm hiểu sự sử dụng nước ngầm và ô nhiễm nguồn nước ngầm khu vực.

5. Thư thập những tài liệu về tình hình khí hậu và những yếu tố khí tượng cơ bản như mực báo nhiệt,
nhiệt độ, trong đó chú ý những trị số trung bình tháng.

6. Phân tích xác định những tiêu chuẩn chất lượng nước có thể áp dụng trong khu vực, nếu ra những kỹ thuật xử lý và thời gian cần thiết để đạt được những tiêu chuẩn chất lượng trên.

7. Tóm tắt những công trình nghiên cứu về các chất thải hư cỏ trong khu vực. Đồng thời, nếu những thông tin cần thiết về tình hình nhiệt, bố líng các chất vô cơ, các loại vi khuẩn trong nguồn nước địa phương. Cần chỉ ra những nguồn chính gây ô nhiễm đối với môi trường.

8. Tính toán những ảnh hưởng ô nhiễm nguồn nước thông qua việc tính lượng những chất ô nhiễm hàng ngày theo số liệu thu thập được. Chú ý nếu rõ những thông số chất lượng nước thu được là tốt hoặc chưa tốt so với tiêu chuẩn chất lượng nước đúng.

9. Đánh giá những biến đổi chất lượng nước do xây dựng các công trình trong khu vực gây nên chủ yếu gồm:
- Các loại công trình, thời gian xây dựng và bắt đầu hoạt động của chúng
- Những biến đổi chất lượng nước của dòng chảy do công trình gây nên.
- Phạm vi đoạn sông lưu bị giảm chất lượng nước.
- Anh hưởng của sự giảm chất lượng nước với dùng nước ở hạ lưu như thế nào.
- Những biện pháp kỹ thuật cần thiết trong khi xây dựng công trình để giảm đến tối thiểu sự ô nhiễm.

10. Nếu trong khu vực, sự ô nhiễm vượt quá tiêu chuẩn chất lượng thì phải tiếp tục tiến hành đo đạc các thông số chất lượng nước phục vụ cho nghiên cứu không chế sự ô nhiễm.
TÀI LIỆU THAM KHẢO

Tiếng Việt

HYDROLOGICAL CALCULATION

Nguyen Thanh Son

The book Hydrological calculation presents the methods of analysis and calculation hydrological characteristics, the behavior of the phenomena and current processes in time and space that serve the assessment of water resources of territories. In the book included the new knowledge of present hydrology and hydrology of Vietnam.

This text book is designed for of Hydrometeorology faculty of Hanoi University of Science and serves as a reference for experts in hydrology in irrigation and agrotechnique as well.