HYDROLOGICAL AND SEDIMENTARY STRUCTURE OF THE WATER COLUMN IN THE BACH DANG - CAM ESTUARY

LEFEBVRE Jean-Pierre1, ARFI Robert2, CHU Van Thooc3, DINH Van Uu4, MARI Xavier5, PANCHO Jean-Yves6, TORRETON Jean-Pascal5, VU Duy Vinh3, OUILLON Sylvain1

1UMR 5566-LEGOS, IRD, 14 av. Edouard Belin, 31400 Toulouse, France
2UMR 6535-LOPB, IRD, 13288 Marseille cedex 09, France
3Institute of Marine Environment and Resources, 246 Danang, Haiphong, Vietnam
4Hanoi University of Science, VNU, 334 Nguyen Trai, Hanoi, Vietnam
5UMR 5119-ECOSYM, IRD, Institute of Biotechnology, 18 Hoang Quoc Viet, Hanoi, Vietnam
6US 191-IMAGO, IRD, BP A5, 98848 Nouméa cedex, New Caledonia
E-mail: jean-pierre.lefebvre@ird.fr, sylvain.ouillon@legos.obs-mip.fr

Abstract:

The present study aimed to describe the hydrological functioning of the Northern branch of the Red River estuary (Song Hong). This research results obtained from the project "Hydrodynamic and anthropogenic influences on phytoplankton and bacterioplankton of the Bach Dang estuary"(2008-2010) funded by VAST, IRD and the French National Program EC2CO. A very contrasted functioning was observed between wet and dry seasons. During the wet season, the strong freshwater discharge dominated the flow, producing high turbulence levels. During the dry season, as the steady fluvial component weakened, the action of tidal intrusion became predominant with a significant action of tidal pumping during the dry season which is responsible of a strong silting up of the estuarine system.

Tóm tắt:

CÂU TRÚC TRÀM TỊCH VÀ THỦY HỌC CỦA CỘT NƯỚC O VŨNG CỦA SÔNG BACH ĐÀNG - CÂM

Communication

In order to analyze the variability in the functioning of the Bach Dang-Cam estuarine system at both the tidal and seasonal scales, two field campaigns were conducted, one in July 2008 (wet season) and the other in March 2009 (dry season). During these two campaigns, 24-hours surveys corresponding to one spring tidal cycle were achieved at key spots of the estuarine system. During every survey, the tidal elevation was approximately 2 m. Two stations were located on the main rivers flowing into the Haiphong bay; one on the Cam River, which is connected to the Red River, and one on the Bach Dang River, at about five kilometers upstream to the mouth; the third station was located close to the mouth of the system near Dinh Vu. Water fluxes and suspended solid averaged over one tidal cycle showed high seasonal variations. Water discharge was about 4 times higher in the wet season than in
the dry season at each station. The budget indicated a water loss by leakage though channels, mangroves and wetlands, which accounts for 20% and 42% of the liquid contributions of the total inputs in the wet and dry season, respectively. These budgets also indicated that during the wet season, the massive influx of sediment originated from the watershed passed through the estuary with a weak loss by deposition or leakage. During the dry season, the quantity of transported sediment was lower and the major input of sediment into the system came from the coastal area. The estuarine domain was silting up whatever the season (with a settling rate of approximately 2,400 metric tons per day in dry season, 3 times higher than deposit in wet season)(Fig. 1).

Figure 1. Liquid flow budget \(Q (m^3 \cdot s^{-1}) \) (left) and solid transport (metric tons day\(^{-1}\)) (right) during wet (black) and dry (white) season

Since the celerity of the tidal wave propagates faster with increasing water depth, the shape of the tidal wave gets distorted for shallow estuary, where the difference in water height is significant between ebb and flood. Due to their shape, large with shallow lateral shoals and a deep narrow channel, as it moves landward toward the Cam and Bach Dag stations; the rise of the tide becoming faster than its fall and, consequently, the current peak at flood faster than the one at ebb. This asymmetry is referred to as ‘tidal pumping’ and causes the sediment to be transported upstream. An elevation of the tidal level counterbalances the liquid budget so that the overall balance of tidal flow is null. The upward solid flux is located near bed (Fig. 2).

Figure 2. Tidal (solid line) and advective (dashed line) sediment flux during the wet (black) and dry (grey) seasons at the Cam (left), Bach Dang (center) and Dinh Vu (right) stations, averaged over a tidal cycle

Different sources of perturbation can influence the structure of the water column (heat flux, fresh water input, salt concentration, wind, rain…). The potential energy anomaly \(\phi \) (J.m\(^{-3}\)) used to quantify the level of stratification, was calculated as [1]:

\[
\phi = \int (\rho g z) \, \text{d}z
\]
where ρ is water density calculated according to the UNESCO 1983 polynomial formula, h is the water depth, g is the acceleration of gravity and $<>$ stands for averaging over the water column.

As the water density is mostly related to the salt concentration, the saline intrusion driven by tidal propagation contributes to the structure of the water column. The increase in potential energy anomaly from wet to dry season is similar at the Bach Dang ($x 7.96$) and Dinh Vu stations ($x 7.26$). Between these two stations, the proportionality factor varied little from one season to another ($x 0.88$ in wet season, $x 0.80$ in dry season). The structuring is mainly related to the marine water entries but can also depend on the weather conditions. Thus, the Cam river, rather homogeneous in rainy season showed a vertical structure in dry season during a short episode when wind speed was at its minimum.

Table 1. Potential energy anomaly

<table>
<thead>
<tr>
<th>Station</th>
<th>Wet season (July 2008)</th>
<th>Dry season (March 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Min</td>
</tr>
<tr>
<td>Cam</td>
<td>0.26</td>
<td>0.15</td>
</tr>
<tr>
<td>Bach Dang</td>
<td>4.79</td>
<td>0.04</td>
</tr>
<tr>
<td>Dinh Vu</td>
<td>4.22</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The turbulent kinetic energy dissipation rate (ε: m2 s$^{-3}$) integrated over the water column can be expressed as a function of wind and averaged current magnitude [2]:

$$\varepsilon = k_b \frac{\langle u \rangle}{h} + k_s \frac{w^3}{\psi h}$$

where k_b and k_s are the bottom and surface drag coefficients, $\langle u \rangle$ is the depth-averaged water velocity, h is the water height, w is the wind velocity, and ψ the ratio between water and air density.

High turbulence levels promote vertical advection of salt. It results a homogeneization of the water column that corresponds to low potential energy anomaly values. At the contrary, near slack water of high tide, the low turbulence level does not influence significantly the strong stratification induced by the presence of an upper layer of freshwater and a bottom layer of marine water in the flow (Fig. 3).
Figure 3. Potential energy anomaly (solid line) and turbulent energy dissipation rate (dashed line) during a tidal cycle at the Cam (up), Bach Dang (center) and Dinh Vu (down) stations during wet (left) and dry (right) season.

References
